First-principles exploration of M_2O (M = Li, Na, and K) for CO_2 adsorption

<u>김영섭</u>, 강성구[†] 울산대학교 (sgkang@ulsan.ac.kr[†])

Carbon dioxide ($\rm CO_2$) emitted from fossil fuels is the major gas causing global warming and climate change. There are many different approaches to solve these problems *via* adsorption, absorption, or separation using membranes. In this study, we especially chose three alkali metal oxides, $\rm Li_2O$, $\rm Na_2O$, and $\rm K_2O$ for $\rm CO_2$ adsorption. Using first–principles density functional theory (DFT) calculations, we firstly obtained the adsorption energies of $\rm CO_2$ on dopant–free $\rm Li_2O$, $\rm Na_2O$, and $\rm K_2O$ (111) surface. Then, two different strategies to improve the $\rm CO_2$ adsorption were used. Firstly, we doped other alkali metals on these surfaces to understand the effect of dopants on $\rm CO_2$ adsorption. Secondly, we applied strains ($\rm -3 \sim +3\%$) to the doped system which has the highest adsorption energy of $\rm CO_2$. To understand the charge transfer between the adsorbent and these systems, Bader charge analysis was carried out. These studies will be helpful to develop an effective adsorbent for $\rm CO_2$ capture.