Experimental investigation of exothermic heat during CO₂ methanation and its heat transfer coefficient measurement in a bubbling fluidized bed reactor <u>남형석</u>, 김정환, 진경태, 이승용, 이도연, 류호정, 서명원[†] 에너지기술연구워 As one of clean fuel technologies, CO_2 methanation is recently paid attention as it captures and converts CO_2 into CH_4 by reacting with H_2 gas. An exothermic heat during CO_2 methanation is an important issue to be solved to achieve the maximum CH_4 production and its operating efficiency. To achieve a stable reaction temperature throughout the fluidized bed reaction chamber, the investigation of exothermic heat generation and heat transfer coefficients was performed during CO_2 methanation. First, the increase in the reactor temperature due to the exothermic heat of CO_2 methanation was understood by varying the conditions of the amount of reactant gas and the ratio of inert material (or height) at a constant temperature, CO_2 methanation. Then the heat transfer coefficients in a fluidized bed reactor were investigated at the temperature (250 – 450 °C), minimum fluidizing velocity (1.3 – 4.0 Umf), and reaction pressure (1 – 5 bar) using nickel based bed material. The current study is expected to be an important material for the development of a fluidized bed reactor that handles the exothermic CO_2 methanation reaction.