Adsorption and decomposition of N_2O on Fe-TiO₂-supported V_2O_5 -WO₃ catalysts

<u>응웬티프엉타오</u>, 김문현[†], 양기혁 대구대학교 (moonkim@daegu.ac.kr[†])

This study has been focused on the ability of Fe^{2+} –exchanged titania–supported V_2O_5 – WO_3 catalysts to adsorb and decompose N_2O . A sample of a 1.36% Fe^{2+} – TiO_2 –supported V_2O_5 – WO_3 catalyst gave peaks near 2234 and 2265 cm⁻¹ which are similar to those by N_2O adsorbed on a Fe–ZSM–5 sample. Thus, they could be assigned to N_2O adsorbed on Fe^{2+} sites. The intensity of the both peaks decreased with an increase in Fe amounts, which might be because of the formation of $Fe(O)_x$ on the catalyst surface. Similar peaks even on the bare titania appeared and N_2O interacts with not only Fe^{2+} sites but also with Ti^{n+} sites. The decomposition of N_2O could take place over the Fe^{2+} – TiO_2 although this was quickly deactivated by O atoms generated in N_2O decomposition process. It is proposed that the Fe^{2+} – TiO_2 –promoted catalysts can play a role for the decomposition of N_2O from NH_3 –SCR reaction.