Electrocatalytic Methane Oxidation at Ambient Temperature

<u>김지원</u>, 박종혁[†] 연세대학교 (lutts@yonsei.ac.kr[†])

Since methane is the main component for natural gas, methane has been widely studied as an useful energy source. However, CH_4 activation is a challenging process due to its strong C-H bond energy and lack of polarity. Here, I studied CH_4 activation via introducing electrochemical system using electrochemical catalyst, $NiCo_2O_4/ZrO_2$ nanocomposite which facilitate CH_4 oxidation.

Electrochemical performance test: LSV test was conducted in a three-electrode system with a glassy carbon electrode as the working electrode, Ag/AgCl as the reference electrode, a Pt foil as the counter electrode and $0.5 \text{ M} \text{ Na}_2\text{CO}_3$ solution as the electrolyte.

The electrochemical conversion of CH_4 was conducted in a two-electrode system with a closed reactor, employing graphite foil as the working electrode, Pt foil as the counter electrode and 50ml 0.5 M Na₂CO₃ solution as the electrolyte.

The NiCo2O4/ZrO2 samples shows high catalytic activity in LSV measurement. The products were collected after reaction for 5 h, 12 h and 20 h. The main products were 1–propanol and 2–propanol.

499