Studies on Low temperature Dry Reforming of Methane over Ti modified Ni/ZrO $_2$ -Al $_2$ O $_3$ Catalyst

 $\underline{\text{U}}$ 설아 1,2 , 노영수 1 , 홍기훈 3 , 송현태 1 , 이관영 2 , 문동주 1,† 1 한국과학기술연구원; 2 고려대학교; 3 UST

Dry reforming of methane is a desirable process for the production of syngas from greenhouse gases. However, carbon formation is a serious obstacle against catalytic activity and stability. From previous study, it was found that the Ni/ZrO₂-Al₂O₃ catalyst prepared by modified Pechini sol-gel showed best catalytic performance regarding resistant to carbon deposition. To minimize the coke formation, titanium supported on the $\rm ZrO_2$ -Al₂O₃ were prepared by modified Pechini sol-gel and the Ni/ZrTiAlO_x catalysts were prepared by an impregnation method. The catalysts before and after the reaction were characterized N₂ physisorption, XRD, TPR, and TPSR analysis. The prepared catalysts were investigated under the reforming of methane with carbon dioxide at temperature of 600 °C, an atmospheric pressure, a methane/carbon dioxide ratio of 1, and a space velocity of 25,000 h⁻¹. It was observed that the Ni/ZrTiAlO_x catalyst showed improved catalytic stability than Ni/ZrO₂-Al₂O₃ catalyst. These result can be interpreted that the Ti supported on $\rm ZrO_2$ -Al₂O₃ plays important role in the formation of oxygen vacancy, and improve the catalytic stability at lower temperature.