Catalytic Activity of CO oxidation on $M/Ce_{1-x}Cu_xO_{2-\delta}$ (M=Pt, Pd, Cu, and Ni)

<u>장명곤</u>, 한정우^{1,†} 서울 시립대학교; ¹포항공과대학교 (jwhan@postech.ac.kr[†])

As automobiles increase year by year, environmental pollution becomes a serious issue due to the exhaust gases. Among them, CO is a main exhaust gas of automobiles which is fatal to people. It is therefore required to develop high performance CO conversion catalysts. Particularly, CeO₂ has been widely studied because it has made great contribution as a support in CO oxidation. Thus, in order to improve the CO oxidation, we doped or impregnated the CeO₂ with several metals. First, by comparing M/Ce_{1-x}Cu_xO₂₋₆ with M/CeO₂, the interaction was identified between Cu doped into CeO₂ and metal particles impregnated on CeO₂. There was no difference between M/CeO₂ and M/Ce₁₋ _xCu_xO₂₋₆ in XRD data because the Cu was doped into the lattice of ceria. However, we found that the catalytic activity increases on Cu-doped CeO₂ or metal particles impregnated onto CeO₂ further increased the CO oxidation activity. Especially, Cu/Ce_{1-x}Cu_xO₂₋₆ showed high activity, which was the similar activity to noble metals on Ce_{1-x}Cu_xO₂₋₆.