A comparison study on spinel ferrite catalysts for HT-water gas shift reaction using wastederived synthesis gas

 $\frac{27 \cdot 1}{1}$, 구윤정 1 , 정대운 1,2,† 1 창원대학교 친환경해양플랜트FEED공학과정; 2 창원대학교 토목환경화공융합공학부 $(dwjeong@changwon.ac.kr^\dagger)$

In this study we synthesize AFe_2O_4 spinel ferrite (A = Ni, Co, Mn, Mg, or Zn) catalysts prepared by the sol-gel combustion method using the amino acid glycine (98.5%, Aldrich) and compared the catalytic activity of Ni, Co, Mn, Mg, or Zn substituted spinel ferrite catalysts for the High Temperature water-gas Shift (HTS: $CO + H_2O \leftrightarrow H_2 + CO_2$) reaction. The sol-gel combustion method which is combined a chemical sol-gel method and combustion method has benefits as follows: relatively short processing time and production of ultrafine particles with narrow size distribution. The NFe_2O_4 catalyst exhibited the highest CO conversion with stability among the prepared catalysts. This is primarily due to the inverse spinel structure and easier reducibility of the NFe_2O_4 catalyst.

Acknowledgements: This work was supported by the Korea Ministry of Environment as Waste to Energy-Recycling Human Resource Development Project (YL-WE-19-001).