Design of Orthogonal Polymer Semiconducting for Sequential Solution High-resolution Tandem Electronics

권혁민, 박한울, 최근영 1 , 강보석 2 , 윤희준 3 , 황해중, 조길원 2 , 김윤희 4 , 정권범 5 , 강문성 1 , 이호 ${\overline {\rm O}}^1$, 김도환 †

한양대학교; 1 숭실대학교; 2 포항공과대학교; 3 경상대학교; 4 이화여자대학교; 5 동국대학교 (dhkim 7 6@hanyang.ac.kr †)

Herein, we present a novel orthogonal polymer semiconductor (OPS) that is capable of showing chemical and physical endurance during sequential solution coating and photolithography processes. We adopted sol-gel process to achieve the orthogonality of organic semiconductor. The major step of a sol-gel reaction is hydrolysis and condensation reactions which can convert molecular precursors into a highly cross-linked network. As a result of manipulating this step carefully, we could achieve a self-assembled structure of either quasi-3D random or ladder characteristics. This structure enables the thin film to attain the highly tolerance against harsh external stimuli. Consequently, we showed that sub-micron pattern and formation of tandem structures of OPS can be done through conventional photolithography with sequential solution and RIE etching processes, and finally achieved tandem electronic devices including a pn-complimentary inverter logic circuit and pixelated polymer light-emitting diodes.