Iron-Doped Graphitic Carbon Nitride on Nickel foam as Highly Efficient Electrocatalysts for Oxygen Evolution Reaction

<u>nguyen dang tru</u>, 이민형^{1,†} 경희대학교; ¹경희대학교 응용화학과 (minhlee@khu.ac.kr[†])

Efficient electrochemical water splitting to hydrogen and oxygen is considered a promising technology to overcome environmental problems resulted from fossil fuel energy consumption. Graphitic carbon nitride $(g-C_3N_4)$ is one of the most stable allotrope in ambient conditions, and it has very attractive properties for catalysts such as high chemical stability behavior. By introducing metal ions (e.g., Fe³⁺, Zn²⁺) into $g-C_3N_4$, electronic structures of $g-C_3N_4$ can be modified and provide way to tune catalytic properties. In this work, Fe-doped $g-C_3N_4$ on Ni foam was prepared and studied its catalytic performances for OER. The catalyst exhibits very low overpotential (~230 mV) to achieve a current density of 10 mA cm⁻² for OER and good stability in alkaline solution.