Marine SO_{x} Scrubber: Design, Simulation and Experiment <u>이동영</u>, NguyenVanDucLong[†], Kim Myung Jin¹, 곽충용¹, 이영목¹, 이승원¹, 이문용² 영남대학교; ¹한발매스테크; ²영남대하교 (allenthelong@yahoo.com[†]) The International Marine Organization(IMO) established regulations on SO2 emissions in the MARPOL Annex VI.Since 1st January 2015 equivalent Sulphur emissions have to be lower(0.1% in weight) in some coastal regions named "Sulphur Emission Control Areas", SECAs while from 1st January 2020, sulphur emissions for oceangoing vessels must be equivalent to a sulphur content in fuel lower than 0.5% in weight worldwide. Wet flue gas desulfurization (FGD) process is preferred because it can comply environmental regulation economically. In this work, experiments are performed using scrubber, which has square-based shape and fresh water with addition of sodium hydroxide as absorbent, to treat flue gas from a marine diesel engine(720 kW) that has to comply with current IMO-MARPOLVI 14 regulation for SECAs. The experimental tests in spray column indicate that the absorption efficiency above 95% can be achieved by using liquid-to-gas mass ratio about to 4.32 kg.kg-1. The experimented performances match well with the simulated results. This research was supported by X-mind Corps program of National Research Foundation of Korea(NRF) funded by the Ministry of Science, ICT (2019HID8A110563011).