Catalytic performance enhancement over Cu/CeO₂ catalysts by modification of cerium impregnation sequence in the low temperature water-gas shift reaction <u>안선용</u>, 노현석[†] 연세대학교 (hsroh@yonsei.ac.kr[†]) The low temperature water-gas shift (LT-WGS) reaction has been carried out at gas hourly space velocity (GHSV) of $36,000 \, \text{mL/gh}$ over Cu/CeO_2 catalysts modified with various cerium impregnation sequences. For the purpose of applying various cerium impregnation sequence, Cu/CeO_2 catalysts were prepared by various preparation methods such as co-impregnation method (Cu-Ce/CeO_2) and sequential impregnation method (Ce/Cu/CeO_2 , Cu/Ce/CeO_2). The effect of cerium impregnation sequence on the physical and chemical properties related with catalytic performance of Cu/CeO_2 catalysts were analyzed through various characterization techniques including N_2 adsorption-desorption, $N_2\text{O}$ titration, X-ray diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS), Raman spectroscopy, and X-ray Absorption Fine Structure (XAFS). The characterization result for each catalyst was correlated with its catalytic activity result in the LT-WGS reaction.