Organic spacer-based quasi-two-dimensional perovskites with improved moisture stability for high-performance planar solar cells <u>김은비</u>, AMEEN SADIA, 신형식[†], 압둘라, 알람샤바즈 전북대학교 (hsshin@ibnu.ac.kr[†]) Quasi-two-dimensional (Q-2D) perovskites have shown great potential for application in solar cells due to their intrinsic stability, where the organic spacer dominantly determines the Q-2D perovskite ambient stability and device performance. In this work, a novel Q-2D perovskite photosensitizer was prepared by 2-(4-Methoxyphenyl)ethylamine hydroiodide (MPAI) as organic spacer and methylammonium iodide (MAI) for the fabrication of perovskite solar cells (PSCs). The synthesized MPA_{0.2}MA_{0.8}PbI₃ film exhibited the absorption bands at \sim 760 nm and optical bandgap was estimated as \sim 1.63 eV. The morphological, optical and photovoltaic properties of Q-2D perovskites were enhanced by adding different amine derivatives i.e. NH₄Cl, NH₄F, NH₄SCN as light-harvesting layer. The fabricated device of configuration FTO/TiO₂/MPA_{0.2}MA_{0.8}PbI₃/NH₄SCN/Spiro-OMeTAD/Au achieved power conversion efficiency (PCE) of \sim 15.1% with short circuit current density (J_{sc}) of \sim 22.9 mA/cm², open-circuit voltage (V_{oc}) of 1.11 eV and fill factor (FF) value of 0.59.