Methane Chlorination using Zeolite Catalysts: Effect of Si/Al ratios and Framework Types on CH₃Cl Yield <u>박성현</u>, 권승돈, 최유열, 임슬기, 나경수[†] 전남대학교 (kyungsu_na@chonnam.ac.kr[†]) CH₄ can be chlorinated to a series of chloromethane compounds (i.e., CH₃Cl, CH₂Cl₂, CHCl₃ and CCl₄) in the presence of molecular chlorine gas (Cl₂). Among the possible chlorinated products, CH₃Cl can be usefully converted to olefin and hydrocarbon though other chlorinated products did not. Accordingly, the selective chlorination of CH₄ using Cl₂ to produce CH₃Cl is very important, for which the heterolytic cleavage of Cl₂ molecule should be preferred to the homolytic cleavage to two chlorine radicals. In this work, effects of zeolite framework types and Si/Al ratios on the CH₃Cl productivity were investigated, which demonstrated that the CH₄ conversion, CH₃Cl selectivity, and hence CH₃Cl yield could be remarkably controlled by the catalysts properties. The details of CH₄ chlorination and the results are going to be discussed in this poster.