Structure and activity of Ni₂P/b catalysts for hydrocracking of 1-methyl-naphthalene to benzene, toluene, and xylene <u>김지현</u>, 이용걸^{1,†} 단국대학교; ¹단국대학교 화학공학과 (yolee@dankook.ac.kr[†]) Catalytic activities of N_2P/β catalysts were investigated for the hydrocracking of 1-methyl naphthalene (1-MN) polycyclic aromatics at 653K-673K and 6.0MPa, LHSV's 1.0 h⁻¹ with varying H_2 flowrate in a continuous fixed bed reactor. The structural properties of the catalysts were characterized by N_2 physisorption, X-ray diffraction (XRD), and X-ray absorption spectroscopy, which confirmed the formation of N_2P phase on the support. The hydrocracking catalytic activities were compared in the presence of dimethyl disulfide and indole as respective S and N model compounds in the feed. It was demonstrated that the N_2P catalysts show an excellent hydrocracking activity over 99% conversion of 1-MN and 44.2% yield of BTX.