First-Principles Understanding and Design of Metal Oxides for Solar Hydrogen Production via Water Splitting

<u>Gyeong S. Hwang</u>[†] The University of Texas at Austin (gshwang@che.utexas.edu[†])

Renewable sources of energy are increasingly needed and solar production of hydrogen fuel from water offers significant potential to contribute to these needs if new photocatalyst materials and/or more efficient photocatalytic systems can be identified for visible–light–driven water photoelectrolysis. Transition metal oxides are considered as promising candidate as they are earth abundant, eco-friendly, and stable in aqueous solution. Particularly, Bismuth Vanadate (BiVO₄) has attracted much attention, but pristine BiVO₄ exhibits poor electron–hole separation and sluggish water–oxidation kinetics. Significant research efforts have been made to enhance the performance of BiVO₄. However, the design and successful realization of commercially viable BiVO₄–based photoanodes are still rather elusive. This talk will highlight the strong effects of crystal phase and doping on the photocatalytic activity of BiVO₄ that have been found from combined first–principles and experimental studies. The improved understanding offers important guidance for the rational design of metal oxide-based photocatalysts.