Efficient doping of diketopyrrolopyrrole-based conjugated polymer with longer thiophene groups toward enhanced thermoelectric performance

<u>이택성</u>, 김나영¹, 이다연¹, 오종규, 이근진¹, 김재영², 안태규², 정용진², 김윤희¹, 장재영[†] 한양대학교; ¹경상대학교; ²한국교통대학교 (iviang15@hanyang.ac.kr[†])

Backbone engineering of conjugated polymers for efficient doping can offer the possibility of advancing charge transport and thermoelectric performances. In this work, a diketopyrrolopyrrole (DPP)-based conjugated polymer with long thiophene groups in a repeating unit, EHI6-20DPP, was synthesized for achieving enhanced thermoelectric properties. The electrical conductivity and thermoelectric properties of the p-type doped EHI6-20DPP were achieved to be 93.28 S/cm and 56.73 μ W/mK², respectively. Since the extended thiophene groups can act as electron donating groups, EHI6-20DPP showed better thermoelectric performance than the reference DPP-based polymer with shorten thiophene groups upon p-type doping. The experimental results of EHI6-20DPP were well fitted with a charge transport model which demonstrates the relationship between thermoelectric properties, indicating superior charge transport ability of the doped EHI6-20DPP via polymer backbone engineering.