Cu(1)-impregnated MOF-derived carbons (MDCs) and activated carbon for high CO adsorption capacity and ${\rm CO/CO_2}$ selectivity

<u>김성천</u>^{1,2}, 윤대희², 조철현³, 정다솜^{4,2}, 최시영¹, 황해진⁴, 박제성^{2,†} ¹한국과학기술원(KAIST); ²한국생산기술연구원(KIIECH); ³한국생산기술연구원(KAIST); ⁴인 하대학교

(jpark@kitech.re.kr[†])

The research of selective adsorbent materials for carbon monoxide with high CO/CO_2 selectivity and thermal/chemical stability is a challenge faced in carbon neutralization. Conventional way to treat CO is to use a catalyst to oxidize CO to CO_2 , but it emits CO_2 to the environment. Nevertheless, CO is an important industrial raw material for C1 chemistry, thus the development and utilization of CO are needed for the environmental protection, and chemical industry. In this study, CU(1)-impregnated activated carbon and CO are prepared as the adsorbent for CO/CO2 separation. The impregnated adsorbents showed better CO adsorption than CO_2 and had selective CO adsorption compared to CO_2 . To predict adsorption isotherms of equimolar CO and CO_2 mixtures, Ideal adsorbed solution theory (IAST) was applied. Cu(1)-impregnated activated carbon and MDCs appears promising as an adsorbent material for effective CO/CO_2 separation.