Influence of Transition Metal Oxides and h-BN on the NH₃-SCR and CO Oxidation at low temperature

<u>임한규^{1,2}</u>, 이명진¹, 정보라¹, 박경요¹, 전승엽¹, 김태욱¹, 김홍대^{1,†} ¹한국생산기술연구원; ²부산대학교 (hdkim@kitech.re.kr[†])

Selective catalytic reduction of NO_x with NH_3 (NH_3 -SCR) requires a lot of research to solve problems such as poor catalytic efficiency at low temperature and the emission of unreacted ammonia (NH_3 -Slip). Accordingly, this study deals with the abatement of NO_x for NH_3 -SCR and oxidation performance using the mainly emitted gases (NO, CO, NH_3) of stationary source. As transition metals, Such as Cu, Ce, Co are known for excellent redox properties and characteristics of various redox species. We synthesized the catalyst by impregnating a selected transition metal into hexagonal boron nitride (h-BN). Compared to V/Ti catalysts synthesized by conventional methods, the catalyst modified with porous h-BN has enhanced particle anti-aggregation and the highly dispersed catalytic active metal particles improve activity at low temperatures and SCR performance. In addition, this study suggests the possibility of simultaneous removal of CO, NH_3 through oxidation performance. The improved properties are mainly confirmed in X-ray photoelectron spectroscopy (XPS), temperature program desorption (TPD), temperature program reduction (TPR)