Water/Ethanol-Soluble NDI-Based Conjugated Polymers for Eco-Friendly and Air-Stable All-Polymer Solar Cells

<u>이승진</u>^{1,2}, 김영웅^{1,2}, Ziang Wu^{3,4}, 이창연^{1,2}, 오승진^{1,5}, Nguyen Thanh Luan^{3,4}, 이준복^{1,2}, 정다 현^{1,2}, 김택수^{1,5}, 우한영^{3,4}, 김범준^{1,2,†} ¹KAIST; ²생명화학공학과; ³고려대학교; ⁴화학과; ⁵기계공학과 (bjkim02@kaist.ac.kr[†])

Environmentally benign aqueous-processed all-polymer solar cells (aq-APSCs) are reported for the first time by developing a series of water/ethanol-soluble naphthalene diimide (NDI)-based polymers: P(NDIDEG-T), P(NDITEG-T), and P(NDITEG-T2). The polymers were designed by attaching hydrophilic oligoethylene glycol (OEG) side chains to facilitate processability in the polar solvents. The P(NDIDEG-T) polymer with shortest OEG side chains exhibited the highest performance with a power conversion efficiency (PCE) of 2.15%. Furthermore, these aq-APSCs showed outstanding air-stability as evident by maintaining more than 90% of the initial PCE in air after 4 days. The double cantilever beam tests revealed that the high interfacial adhesion properties between the OEG-based active layer and hydrophilic electron/hole transporting layers can be the origin of the enhanced durability under ambient conditions. Both the good device stability and eco-friendliness make the aq-APSCs worthy candidates for development of scalable PSCs.