Computational fluid dynamic modeling and simulation of bubble column with hydrocracking reaction

<u>Tran Van Bay</u>, Ngo Ich Son, 임영일[†], Pham Hai Hung¹, 임석현¹, 고강석¹, 노 남선¹ 한경대학교; ¹한국에너지기술연구원 (limyi@hknu.ac.kr[†])

A pilot-scale H₂-vacuum residue slurry bubble column reactor (SBCR) with catalytic hydrocracking reactions was operated at 425 °C and 160 bar in the homogeneous regime. The hydrodynamics in terms of specific pressure drop ($\Delta P/L$) and gas holdup (aG) were experimentally measured in the SBCR with 2.0 m height and 0.05 m inner diameter, which was operated at a superficial gas and liquid velocities of 6.4 and 0.271 mm/s, respectively. Based on the normal boiling point, the composition of the product classified into five pseudo-components was measured in the reactor. A two-phase computational fluid dynamics (CFD) model coupled with a reaction kinetics was developed for the SBCR at the same operating condition as the experiment. The calculated $\Delta P/L$, aG, and composition of five pseudo-component were compared with experimental data. The CFD model is applicable to predict hydrodynamics and species concentrations of homogeneous bubble columns for gas-organic liquid under elevated pressure.