Effect of multi-layer arrangements on PEC performances with the contribution of g-C₃N₄ locations

<u>상판규</u>, 김정현[†] 서울시립대학교 (jhkimad@uos.ac.kr[†])

As environmental pollution gets worse, solar energy is getting more attention as an alternative of the fossil fuel due to its clean and renewable properties. We can generate H₂ which can be used as a fuel through photoelectrochemical(PEC) water splitting paired with oxygen production.

 $g-C_3N_4$ is noteworthy for its versatile properties. It has favorable light harvesting ability, efficient charge separation property, high surface area and stability. But, $g-C_3N_4$ has a medium band gap of 2.7eV. To facilitate the absorption of wider visible-light region, band gap should be further narrowed. Stacking up multi-layers with other semiconductor photocatalysts can give a solution of this problem. Location of $g-C_3N_4$ is also an important factor. We'll research on the synthesis method and various arrangements of multi-layered structures. We expect enhanced PEC performance as light harvesting, charge transfer efficiency and eventually good photocurrent density.