Low-temperature thermochemical CO₂/H₂O splitting on transition metal-based oxygen carriers in chemical looping processes

<u>이재우</u>† KAIST (jaewlee@kaist.ac.kr[†])

This talk addresses the low temperature thermochemical CO_2/H_2O splitting to CO/H_2 by adopting the concept of chemical looping process. In a typical thermochemical CO_2/H_2O splitting reaction, the reduced oxides are utilized as oxygen carriers to reduce reactants into CO/H_2O . The oxidized oxygen carriers are then thermally reduced subsequently for another splitting progress. However, since this thermal reduction process requires a high operation temperature over 1000 °C, the arrays of stable material selection are extremely limited and operation cost makes it hinder for application. Hence, this talk suggests a way to lower the operation temperature of thermochemical splitting reaction by utilizing reactant gases such as CH_4 and H_2 for reducing oxygen carriers. The reactant of CO_2/H_2O can be effectively converted into CO/H_2 on the reduced oxygen carrier even at 500–850° C.