Effect of binder on Cu₂O electrode for CO₂ reduction

<u>박정은</u>^{1,2}, 김영은¹, 박기태¹, 김영호^{2,†} ¹한국에너지기술연구원; ²충남대학교 (yh_kim@cnu.ac.kr[†])

Carbon capture, utilization, and storage (CCUS) technologies have attracted much attention to mitigate global warming and climate change. Electrochemical CO_2 reduction reaction (CO_2RR) is a promising CCU technology, which produces value-added chemicals and fuels at the mild conditions (e.g., room temperature and pressure). Moreover, CO_2RR using renewable electricity can be a long-term solution to achieve a carbon cycle loop. However, multicarbon (C_{2+}) products formation is still challenging due to the low selectivity, activity, and stability compared to C_1 products. The Nafion binder is commonly used to prepare gas diffusion electrodes (GDEs) which use the gas-phase CO_2 for enhancing the production rate. In this work, we synthesized the facet-controlled Cu2O catalyst and prepare GDEs with different Nafion binder content to investigate the binder effect. As a result, the selectivities of C_{2+} products were increased with lower binder content due to the suppression of hydrogen evolution reaction (HER).