Investigating effect of Carrier Lifetime and Concentration on performance of solar cells using Double Ag–ZnO/ZnO Layer Antireflection Coating

<u>데쿠마샤</u>, 양오봉[†], MOHAMMAD SHAHEER AKHTAR, 김태관

전북대학교

(obyang@jbnu.ac.kr[†])

The Ag–ZnO/ZnO double ARC layer on Silicon solar cells presented the average reflectance by 7.58% which was lowered to ZnO and Ag–ZnO single ARC layer. The simulation study demonstrated the reasonable electron and hole densities of 1.75×10^{16} cm⁻³ and 1.51×10^{16} cm⁻³ on Si solar cells with Ag–ZnO/ZnO double ARC layer. The simulated I–V characteristics exhibited that the efficiency of Ag–ZnO/ZnO double ARC layer based Si solar cells gradually increases with the increase of the minority carrier lifetimes. As compared to single ARC layer, the Ag–ZnO/ZnO double ARC layer based Si solar cell presented the highest conversion efficiency 14.32% with fill factor of 81.35% at minority carrier lifetime of 10 µs and carrier concentration of 1×10^{17} cm⁻³. The improved photovoltaic performance in Ag–ZnO/ZnO double ARC layer based Si solar cell might be suitable to the high generation of electron–hole pairs, improved minority lifetime and excellent carrier concentrations

632