All-Inorganic CsPbI₂Br-based Perovskite Solar Cells with Improved Stability via Ytterbium doping

<u>PATIL JYOTI</u>, 홍창국[†] Chonnam National University (hongck@chonnam.ac.kr[†])

In the present investigation, we successfully fabricated the ytterbium (Yb²⁺) doped CsPbI₂Br-based inorganic perovskite solar cells (IPVSCs). Here, we varied the concentration of Yb in the CsPb_{1-x}Yb_xI₂Br (x=0-0.04) perovskite precursor solution. The optimum concentration of Yb showed improved morphology, crystal growth and photovoltaic performance. For the champion CsPb_{0.97}Yb_{0.03}I₂Br-based device, we achieved the highest 15.41 % power conversion efficiency (PCE) with a short circuit current density (J_{SC}) of 15.94 mAcm⁻², an open circuit voltage (V_{oc}) of 1.267 V and a fill factor (FF) of 76.35 %, which is higher than the CsPbI₂Br-based device. The Yb doping benefits to defect passivation and improve crystal growth and therefore, improved performance is observed. Moreover, the champion CsPb_{0.97}Yb_{0.03}I₂Br device exhibits increased stability of 94 % of initial efficiency after 280 h under 85 °C thermal annealing. Our results provide a new method to rooms the performance of the photovoltaic application.