Highly selectivity using Ca-doped Zn-MOF74 materials for the electrochemical reduction of CO_2

<u>Tran Van Phuc</u>, Jana Jayasmita¹, Huynh Ngoc-Diem¹, Wang Linlin¹, 허승현^{1,†} 울산대학교; ¹University of Ulsan (shhur@ulsan.ac.kr[†])

Abstract:

For the first time, transition metals (Zn) and alkaline earth metals (Ca) combined with MOF74 ligands by the one-pot synthesis pathway, through that selectively converts CO_2 to CO with a low overpotential is reported. The results showed that as high as 93% of Faradaic efficiency toward CO can be obtained when ZC-2 was used as an ERC electrode, which was around two-fold higher value than that of pure Zn-MOF74 (~ 45%).

Keywords: Metal-organic framework (MOF-74); Electrocatalyst; Electrochemical reduction CO₂, CO selectivity; Bimetallic; Computational simulation.

화학공학의 이론과 응용 제27권 제1호 2021년