Simple physical mixing of zeolite prevents sulfur deactivation of vanadia catalysts for NO_x removal

<u>김도희</u>[†], 송인학, 이황호, 전세원, 한정우¹, 김준우², 변영철², 고동준² 서울대학교; ¹POSTECH; ²RIST (dohkim@snu.ac.kr[†])

 NO_x abatement has been an indispensable part of environmental catalysis for decades. Selective catalytic reduction with ammonia (SCR) using V_2O_5/TiO_2 is an important technology for removing NO_x emitted from industrial facilities. However, it has been a huge challenge for the catalyst to operate at low temperatures, because ammonium bisulfate (ABS) forms and causes deactivation by blocking the pores of the catalyst. Here, we report that physically mixed H–Y zeolite effectively protects vanadium active sites by trapping ABS in micropores. The mixed catalysts operate stably at a low temperature of 220 °C, which is below the dew point of ABS. The sulfur resistance of this system is fully maintained during repeated aging/regeneration cycles because the trapped ABS easily decomposes at 350 °C. Further investigations reveal that the pore structure and the amount of framework Al determined the trapping ability of various zeolites. The SCR catalyst was successfully applied to the sintering furnace in the steelmaking factory of POSCO.