Investigating mechanism of reverse water-gas shift reaction on CeO₂-based catalyst by density functional theory

<u>이민우</u>¹, 이재환¹, 이관영^{1,2,†}

¹고려대학교; ²Super Ultra Low Energy and Emission Vehicle (SULEEV) Center (kylee@korea.ac.kr[†])

Global warming has been accelerated due to the increase in emission of greenhouse gas, CO_2 , causing serious problems in environments and climates. Thus, the regulation on CO_2 emission has been reinforced and utilization of CO_2 has been studied. However, CO_2 molecule is chemically and thermodynamically stable. Therefore, activation and conversion of CO_2 to valuable products is attracting worldwide attention. Reverse watergas shift (RWGS) reaction is one of the promising processes that utilizes CO_2 to produce syngas, since the syngas can be converted into valuable carbon-based chemicals by Fischer–Tropsch process. CeO_2 -based catalysts showed high performance in RWGS duo to its oxygen mobility and re-oxidation of oxygen vacancy by CO_2 . Moreover, strong metal–support interaction (SMSI) between CeO_2 and active metals induces high reducibility of CeO_2 and high dispersion of metals. In this study, we tried to investigate the mechanism of RWGS on CeO_2 -based catalysts using density functional theory (DFT) calculation.