Multi-layered core-shell catalyst for CO₂ reforming of methane

<u>민혜현</u>, 강성봉^{1,†} 광주과학기술대학원; ¹광주과학기술원 (sbkang@gist.ac.kr[†])

The catalytic CO₂ reforming of methane possesses an eco-friend implication to produce syngas (H₂ and CO) by converting both major greenhouse gases CH₄ and CO₂. However, the catalyst deactivation by sintering and carbon coking is the major issue to implement scale-up process in real applications. In this study, we prepared one-pot synthesized catalysts consisting of single core@shell and multi-layered catalysts sequentially synthesized (dual and triple-layered core@shell), while keeping a total loading of Ni (*ca.* 10 wt.%) in the sample. The Ni impregnated on SiO₂ (Ni/SiO₂) catalyst was also compared. The CO₂ reforming of methane reaction was carried out under the steady-state condition from 650 to 850 °C with a mixture of CH₄ and CO₂ in Ar balance (CH₄:CO₂:Ar=3:3:4). The catalytic performance is in the following order: Dual layered Ni@SiO₂ > triple-layered Ni@SiO₂ > single Ni@SiO₂ > Ni/SiO₂. Moreover, the dual-layered core-shell catalyst revealed superior long-term stability under the reaction condition with SV=100,000 h⁻¹ for 100 h time-on-stream. The catalysts were also characterized by H₂-TPR, NH₃-TPD, XPS, and TEM to analyze the activity trend and the catalytic stability.