1 |
Dispersion of sulfur creates a valuable new growth medium formulation that enables earlier sulfur oxidation in relation to iron oxidation in Acidithiobacillus ferrooxidans cultures Inaba Y, Kernan T, West AC, Banta S Biotechnology and Bioengineering, 118(8), 3225, 2021 |
2 |
Bioremediation of highly toxic arsenic via carbon-fiber-assisted indirect As(III) oxidation by moderately-thermophilic, acidophilic Fe-oxidizing bacteria Okibe N, Fukano Y Biotechnology Letters, 41(12), 1403, 2019 |
3 |
Chloride ion tolerance and pyrite bioleaching capabilities of pure and mixed halotolerant, acidophilic iron- and sulfur-oxidizing cultures Khaleque HN, Kaksonen AH, Boxall NJ, Watkin ELJ Minerals Engineering, 120, 87, 2018 |
4 |
New approaches for extracting and recovering metals from mine tailings Falagan C, Grail BM, Johnson DB Minerals Engineering, 106, 71, 2017 |
5 |
Long-term stability of bioelectricity generation coupled with tetrathionate disproportionation Sulonen MLK, Lakaniemi AM, Kokko ME, Puhakka JA Bioresource Technology, 216, 876, 2016 |
6 |
Microbial recovery of vanadium by the acidophilic bacterium, Acidocella aromatica Okibe N, Maki M, Nakayama D, Sasaki K Biotechnology Letters, 38(9), 1475, 2016 |
7 |
Extremophilic micro-algae and their potential contribution in biotechnology Varshney P, Mikulic P, Vonshak A, Beardall J, Wangikar PP Bioresource Technology, 184, 363, 2015 |
8 |
Electricity generation from tetrathionate in microbial fuel cells by acidophiles Sulonen MLK, Kokko ME, Lakaniemi AM, Puhakka JA Journal of Hazardous Materials, 284, 182, 2015 |
9 |
Biomining in reverse gear: Using bacteria to extract metals from oxidised ores Johnson DB, du Plessis CA Minerals Engineering, 75, 2, 2015 |
10 |
Optimization of medium components and cultural variables for enhanced production of acidic high maltose-forming and Ca2+-independent alpha-amylase by Bacillus acidicola Sharma A, Satyanarayana T Journal of Bioscience and Bioengineering, 111(5), 550, 2011 |