1 |
Noise covariance identification for nonlinear systems using expectation maximization and moving horizon estimation Ge M, Kerrigan EC Automatica, 77, 336, 2017 |
2 |
On Autocovariance Least-Squares Method for Noise Covariance Matrices Estimation Dunik J, Straka O, Simandl M IEEE Transactions on Automatic Control, 62(2), 967, 2017 |
3 |
Noise covariance identification for time-varying and nonlinear systems Ge M, Kerrigan EC International Journal of Control, 90(9), 1903, 2017 |
4 |
A New Family of High-Resolution Multivariate Spectral Estimators Zorzi M IEEE Transactions on Automatic Control, 59(4), 892, 2014 |
5 |
Fault detection approach for systems involving soft sensors Serpas M, Chu YF, Hahn J Journal of Loss Prevention in The Process Industries, 26(3), 443, 2013 |
6 |
Nonlinear Stochastic Modeling to Improve State Estimation in Process Monitoring and Control Lima FV, Rawlings JB AIChE Journal, 57(4), 996, 2011 |
7 |
Identification of process and measurement noise covariance for state and parameter estimation using extended Kalman filter Bavdekar VA, Deshpande AP, Patwardhan SC Journal of Process Control, 21(4), 585, 2011 |
8 |
Estimation of the disturbance structure from data using semidefinite programming and optimal weighting Rajamani MR, Rawlings JB Automatica, 45(1), 142, 2009 |
9 |
A generalized autocovariance least-squares method for Kalman filter tuning Akesson BM, Jorgensen JB, Poulsen NK, Jorgensen SB Journal of Process Control, 18(7-8), 769, 2008 |
10 |
A new autocovariance least-squares method for estimating noise covariances Odelson BJ, Rajamani MR, Rawlings JB Automatica, 42(2), 303, 2006 |