1 |
Low-temperature NO decomposition through microwave catalysis on BaMnO3-based catalysts under excess oxygen: Effect of A-site substitution by Ca, K and La Xu WT, Shi N, You ZM, Cai JJ, Peng K, Su ZM, Zhou JC Fuel Processing Technology, 167, 205, 2017 |
2 |
Direct NO decomposition over C-type cubic Y2O3-Pr6O11-Eu2O3 solid solutions Masui T, Uejima S, Tsujimoto S, Nagai R, Imanaka N Catalysis Today, 242, 338, 2015 |
3 |
Kinetic evaluation of direct NO decomposition and NO-CO reaction over dendrimer-derived bimetallic Ir-Au/Al2O3 catalysts Song YJ, Lopez-De Jesus YM, Fanson PT, Williams CT Applied Catalysis B: Environmental, 154, 62, 2014 |
4 |
Advances in direct NOx decomposition catalysts Imanaka N, Masui T Applied Catalysis A: General, 431, 1, 2012 |
5 |
Synthesis of Highly Effective CeOx-MnOy-BaO Catalysts for Direct NO Decomposition Hong WJ, Ueda M, Iwamoto S, Hosokawa S, Wada K, Inoue M Catalysis Letters, 142(1), 32, 2012 |
6 |
Electrochemical-catalytic conversion for simultaneous NOx and hydrocarbons emissions control of lean-burn gasoline engine Huang TJ, Wu CY, Hsu SH, Wu CC Applied Catalysis B: Environmental, 110, 164, 2011 |
7 |
Kinetic behaviors of high concentration NOx removal from simulated lean-burn engine exhaust via electrochemical-catalytic cells Huang TJ, Wu CY Chemical Engineering Journal, 178, 225, 2011 |
8 |
Effect of Mn content on physical properties of CeOx-MnOy support and BaO-CeOx-MnOy catalysts for direct NO decomposition Hong WJ, Iwamoto S, Hosokawa S, Wada K, Kanai H, Inoue M Journal of Catalysis, 277(2), 208, 2011 |