1 |
Rare-earth elements in aqueous chloride systems: Thermodynamic modeling of binary and multicomponent systems in wide concentration ranges Das G, Lencka MM, Eslamimanesh A, Anderko A, Riman RE Fluid Phase Equilibria, 452, 16, 2017 |
2 |
Understanding degradation of solid oxide electrolysis cells through modeling of electrochemical potential profiles Chatzichristodoulou C, Chen M, Hendriksen PV, Jacobsen T, Mogensen MB Electrochimica Acta, 189, 265, 2016 |
3 |
Thermodynamic modeling of aqueous systems containing amines and amine hydrochlorides: Application to methylamine, morpholine, and morpholine derivatives Lencka MM, Kosinski JJ, Wang PM, Anderko A Fluid Phase Equilibria, 418, 160, 2016 |
4 |
Modeling the binary system Mn(NO3)(2)-H2O with the extended universal quasichemical (UNIQUAC) model Arrad M, Kaddami M, Maous J, Thomsen K Fluid Phase Equilibria, 397, 126, 2015 |
5 |
Maximum theoretical power density of lithium-air batteries with mixed electrolyte Mehta M, Bevara V, Andrei P Journal of Power Sources, 286, 299, 2015 |
6 |
A multiscale-compatible approach in modeling ionic transport in the electrolyte of (Lithium ion) batteries Salvadori A, Grazioli D, Geers MGD, Danilov D, Notten PHL Journal of Power Sources, 293, 892, 2015 |
7 |
2D modeling of a flowing-electrolyte direct methanol fuel cell Colpan CO, Fung A, Hamdullahpur F Journal of Power Sources, 209, 301, 2012 |
8 |
Li-ion electrolyte modeling: The impact of adding supportive salts Danilov D, Notten PHL Journal of Power Sources, 189(1), 303, 2009 |