1 |
The impact of thermal diffusion on the structure of non-premixed flames Dietzsch F, Scholtissek A, Hunger F, Hasse C Combustion and Flame, 194, 352, 2018 |
2 |
Assessment of differential diffusion effects in flamelet modeling of oxy-fuel flames Gierth S, Hunger F, Popp S, Wu H, Ihme M, Hasse C Combustion and Flame, 197, 134, 2018 |
3 |
Flamelet/progress variable modeling of partial oxidation systems: From laboratory flames to pilot-scale reactors Vascellari M, Xu HB, Hartl S, Hunger F, Hasse C Chemical Engineering Science, 134, 694, 2015 |
4 |
A multi-scale asymptotic scaling and regime analysis of flamelet equations including tangential diffusion effects for laminar and turbulent flames Scholtissek A, Chan WL, Xu HB, Hunger F, Kolla H, Chen JH, Ihme M, Hasse C Combustion and Flame, 162(4), 1507, 2015 |
5 |
LES flamelet-progress variable modeling and measurements of a turbulent partially-premixed dimethyl ether jet flame Popp S, Hunger F, Hartl S, Messig D, Coriton B, Frank JH, Fuest F, Hasse C Combustion and Flame, 162(8), 3016, 2015 |
6 |
The analysis of chemical time scales in a partial oxidation flame Prufert U, Hunger F, Hasse C Combustion and Flame, 161(2), 416, 2014 |
7 |
Evaluation of radiation modeling approaches for non-premixed flamelets considering a laminar methane air flame Messig D, Hunger F, Keller J, Hasse C Combustion and Flame, 160(2), 251, 2013 |
8 |
A consistent flamelet formulation for a reacting char particle considering curvature effects Xu HB, Hunger F, Vascellari M, Hasse C Combustion and Flame, 160(11), 2540, 2013 |
9 |
Development of an inverse diffusion partial oxidation flame and model burner contributing to the development of 3rd generation coal gasifiers Stelzner B, Hunger F, Laugwitz A, Grabner M, Voss S, Uebel K, Schurz M, Schimpke R, Weise S, Krzack S, Trimis D, Hasse C, Meyer B Fuel Processing Technology, 110, 33, 2013 |