1 |
Oxygen vacancies enhance the lithium ion intercalation pseudocapacitive properties of orthorhombic niobium pentoxide Zhang SM, Liu GL, Qiao WM, Wang JT, Ling LC Journal of Colloid and Interface Science, 562, 193, 2020 |
2 |
Phase conversion of chemically exfoliated molybdenum disulfide Kim J, Kim JS, Kim T, Choi H, Lee J, Ji HJ, Lim SC Current Applied Physics, 17(1), 60, 2017 |
3 |
High-rate capability of three-dimensionally ordered macroporous T-Nb2O5 through Li+ intercalation pseudocapacitance Lou SF, Cheng XQ, Wang L, Gao JL, Li Q, Ma YL, Gao YZ, Zuo PJ, Du CY, Yin GP Journal of Power Sources, 361, 80, 2017 |
4 |
Key factors for an improved lithium ion storage capacity of anodic TiO2 nanotubes Kirchgeorg R, Kallert M, Liu N, Hahn R, Killian MS, Schmuki P Electrochimica Acta, 198, 56, 2016 |
5 |
One-step synthesis of hexagonal TiOF2 as high rate electrode material for lithium-ion batteries: research on Li intercalation/de-intercalation mechanism Li B, Wang DK, Wang Y, Zhu BC, Gao Z, Hao QY, Wang YK, Tang KB Electrochimica Acta, 180, 894, 2015 |
6 |
Direct mapping of Li distribution in electrochemically lithiated graphite anodes using scanning Auger electron microscopy Ishida N, Fukumitsu H, Kimura H, Fujita D Journal of Power Sources, 248, 1118, 2014 |
7 |
Structural evolution in LiFePO4-based battery materials: In-situ and ex-situ time-of-flight neutron diffraction study Bobrikov IA, Balagurov AM, Hu CW, Lee CH, Chen TY, Deleg S, Balagurov DA Journal of Power Sources, 258, 356, 2014 |
8 |
Stress development due to surface processes in graphite electrodes for Li-ion batteries: A first report Mukhopadhyay A, Tokranov A, Xiao XC, Sheldon BW Electrochimica Acta, 66, 28, 2012 |
9 |
The study of electrochemical properties and lithium deposition of graphite at low temperature Park G, Gunawardhana N, Nakamura H, Lee YS, Yoshio M Journal of Power Sources, 199, 293, 2012 |
10 |
Ion beam sputter deposition of V2O5 thin films Gallasch T, Stockhoff T, Baither D, Schmitz G Journal of Power Sources, 196(1), 428, 2011 |