1 |
On the stability of reproducing kernel Hilbert spaces of discrete-time impulse responses Chen TS, Pillonetto G Automatica, 95, 529, 2018 |
2 |
Sparse plus low rank network identification: A nonparametric approach Zorzi M, Chiuso A Automatica, 76, 355, 2017 |
3 |
Maximum Entropy vector kernels for MIMO system identification Prando G, Chiuso A, Pillonetto G Automatica, 79, 326, 2017 |
4 |
Regularized linear system identification using atomic, nuclear and kernel-based norms: The role of the stability constraint Pillonetto G, Chen TS, Chiuso A, De Nicolao G, Ljung L Automatica, 69, 137, 2016 |
5 |
Tuning complexity in regularized kernel-based regression and linear system identification: The robustness of the marginal likelihood estimator Pillonetto G, Chiuso A Automatica, 58, 106, 2015 |
6 |
Kernel methods in system identification, machine learning and function estimation: A survey Pillonetto G, Dinuzzo F, Chen TS, De Nicolao G, Ljung L Automatica, 50(3), 657, 2014 |
7 |
A novel methodology for non-linear system identification of battery cells used in non-road hybrid electric vehicles Unger J, Hametner C, Jakubek S, Quasthoff M Journal of Power Sources, 269, 883, 2014 |
8 |
A Bayesian approach to sparse dynamic network identification Chiuso A, Pillonetto G Automatica, 48(8), 1553, 2012 |
9 |
Prediction error identification of linear systems: A nonparametric Gaussian regression approach Pillonetto G, Chiuso A, De Nicolao G Automatica, 47(2), 291, 2011 |
10 |
A new kernel-based approach for linear system identification Pillonetto G, De Nicolao G Automatica, 46(1), 81, 2010 |