1 |
RETRACTION: Application of machine learning for filtered density function closure in MILD combustion (Retraction of Vol 225, Pg 160, 2021) Chen ZX, Iavarone S, Ghiasi G, Kannan V, D'Alessio G, Parente A, Swaminathan N Combustion and Flame, 225, 160, 2021 |
2 |
On the flame structure and stabilization characteristics of autoignited laminar lifted n-heptane jet flames in heated coflow air Jung KS, Kim SO, Chung SH, Yoo CS Combustion and Flame, 223, 307, 2021 |
3 |
Data driven analysis and prediction of MILD combustion mode Jigjid K, Tamaoki C, Minamoto Y, Nakazawa R, Inoue N, Tanahashi M Combustion and Flame, 223, 474, 2021 |
4 |
LES/TPDF investigation of the role of reaction and diffusion timescales in the stabilization of a jet-in-hot-coflow CH4/H-2 flame Zhou H, Yang TW, Dally B, Ren ZY Combustion and Flame, 211, 477, 2020 |
5 |
Comprehensive kinetic study of combustion technologies for low environmental impact: MILD and OXY-fuel combustion of methane Bagheri G, Ranzi E, Pelucchi M, Parente A, Frassoldati A, Faravelli T Combustion and Flame, 212, 142, 2020 |
6 |
New extended eddy dissipation concept model for flameless combustion in furnaces Romero-Anton N, Huang X, Bao HS, Martin-Eskudero K, Salazar-Herran E, Roekaerts D Combustion and Flame, 220, 49, 2020 |
7 |
Effect of hydrogen addition on NOx formation mechanism and pathways in MILD combustion of H-2-rich low calorific value fuels Ali G, Zhang TY, Wu WD, Zhou YG International Journal of Hydrogen Energy, 45(15), 9200, 2020 |
8 |
Numerical study of biomass Co-firing under Oxy-MILD mode Wang XB, Zhang JY, Xu XW, Mikulcic H, Li Y, Zhou YG, Tan HZ Renewable Energy, 146, 2566, 2020 |
9 |
CFD and kinetic modelling study of methane MILD combustion in O-2/N-2, O-2/CO2 and O-2/H2O atmospheres Tu YJ, Xu MC, Zhou DZ, Wang QX, Yang WM, Liu H Applied Energy, 240, 1003, 2019 |
10 |
Autoignition and flame propagation in non-premixed MILD combustion Doanh NAK, Swaminathan N Combustion and Flame, 201, 234, 2019 |