1 |
Probabilistic forecasting of high-resolution clear-sky index time-series using a Markov-chain mixture distribution model (vol 184, pg 688, 2019) Munkhammar J, van der Meer D, Widen J Solar Energy, 196, 310, 2020 |
2 |
Probabilistic solar forecasting benchmarks on a standardized dataset at Folsom, California Yang DZ, van der Meer D, Munkhammar J Solar Energy, 206, 628, 2020 |
3 |
Scenario-based modelling of the potential for solar energy charging of electric vehicles in two Scandinavian cities Good C, Shepero M, Munkhammar J, Bostrom T Energy, 168, 111, 2019 |
4 |
A spatiotemporal Markov-chain mixture distribution model of the clear-sky index Munkhammar J, Widen J Solar Energy, 179, 398, 2019 |
5 |
Probabilistic forecasting of high-resolution clear-sky index time-series using a Markov-chain mixture distribution model Munkhammar J, van der Meer D, Widen J Solar Energy, 184, 688, 2019 |
6 |
Probabilistic forecasting of electricity consumption, photovoltaic power generation and net demand of an individual building using Gaussian Processes van der Meer DW, Shepero M, Svensson A, Widen J, Munkhammar J Applied Energy, 213, 195, 2018 |
7 |
Residential probabilistic load forecasting: A method using Gaussian process designed for electric load data Shepero M, van der Meer D, Munkhammar J, Widen J Applied Energy, 218, 159, 2018 |
8 |
Spatial Markov chain model for electric vehicle charging in cities using geographical information system (GIS) data Shepero M, Munkhammar J Applied Energy, 231, 1089, 2018 |
9 |
Probabilistic forecasting of solar power, electricity consumption and net load: Investigating the effect of seasons, aggregation and penetration on prediction intervals van der Meer DW, Munkhammar J, Widen J Solar Energy, 171, 397, 2018 |
10 |
A Markov-chain probability distribution mixture approach to the clear-sky index Munkhammar J, Widen J Solar Energy, 170, 174, 2018 |