1 |
An improved stability criterion for fixed-point state-space digital filters using two's complement arithmetic Shen T, Yuan ZG, Wang XH Automatica, 48(1), 243, 2012 |
2 |
Stability analysis for digital filters with multiple saturation nonlinearities Shen T, Yuan ZG, Wang XH Automatica, 48(10), 2717, 2012 |
3 |
An improved treatment of saturation nonlinearity with its application to control of systems subject to nested saturation Zhou B, Zheng WX, Duan GR Automatica, 47(2), 306, 2011 |
4 |
A new stability criterion for fixed-point state-space digital filters using two's complement arithmetic Shen T, Yuan ZG, Wang XH Automatica, 47(7), 1538, 2011 |
5 |
Stability of fixed-point state-space digital filters using two's complement arithmetic Further insight Shen T, Yuan ZG Automatica, 46(12), 2109, 2010 |
6 |
Stability analysis for a class of digital filters with single saturation nonlinearity Shen T, Wang XH, Yuan ZG Automatica, 46(12), 2112, 2010 |
7 |
Stability analysis of a class of digital filters utilizing single saturation nonlinearity Singh V Automatica, 44(1), 282, 2008 |
8 |
Elimination of overflow oscillations in direct form digital filters using saturation arithmetic Singh V Automatica, 44(11), 2989, 2008 |
9 |
An analysis of the Hopf bifurcation in a hydroturbine governing system with saturation Ling DJ, Tao Y IEEE Transactions on Energy Conversion, 21(2), 512, 2006 |
10 |
Stability of linear discrete dynamics employing state saturation arithmetic Ooba T IEEE Transactions on Automatic Control, 48(4), 626, 2003 |