1 |
Formation of antiphase boundaries in CuFe2O4 films induced by rough MgAl2O4 (001) substrates Liu K, Zhang RY, Lu L, Mi SB, Liu M, Wang H, Jia CL Thin Solid Films, 680, 55, 2019 |
2 |
The reduction of antiphase boundary defects by the surfactant antimony and its application to the III-V multi-junction solar cells Tong SC, Wang JS, Wu CB, Wu CH, Chang JT, Wei PC Solar Energy Materials and Solar Cells, 144, 418, 2016 |
3 |
Atomic Structure of Antiphase Nanodomains in Fe-Doped SrTiO3 Films Du HC, Jia CL, Mayer J, Barthel J, Lenser C, Dittmann R Advanced Functional Materials, 25(40), 6369, 2015 |
4 |
Structure evolution and microwave dielectric response of (Ca0.5+xSr0.5-x)[(Al0.5Nb0.5)(0.5)Ti-0.5]O-3 solid solutions Hu MZ, Qian J Current Applied Physics, 14(1), 46, 2014 |
5 |
Antiphase domain annihilation during growth of GaP on Si by molecular beam epitaxy Lin AC, Fejer MM, Harris JS Journal of Crystal Growth, 363, 258, 2013 |
6 |
Polyether based side-chain liquid crystalline polymers: Anionic polymerization and phase structures Liu Y, Wei W, Xiong HM Polymer, 54(24), 6572, 2013 |
7 |
Synchrotron X-ray diffraction analysis for quantitative defect evaluation in GaP/Si nanolayers Thanh TN, Robert C, Letoublon A, Cornet C, Quinci T, Giudicelli E, Almosni S, Boudet N, Ponchet A, Kuyyalil J, Danila M, Durand O, Bertru N, Le Corre A Thin Solid Films, 541, 36, 2013 |
8 |
Characterization of antiphase domains on GaAs grown on Ge substrates by conductive atomic force microscopy for photovoltaic applications Galiana B, Rey-Stolle I, Beinik I, Algora C, Teichert C, Molina-Aldareguia JM, Tejedor P Solar Energy Materials and Solar Cells, 95(7), 1949, 2011 |
9 |
Formation Energies of Antiphase Boundaries in GaAs and GaP:An ab Initio Study Rubel O, Baranovskii SD International Journal of Molecular Sciences, 10(12), 5104, 2009 |
10 |
Si (001) surface preparation for the antiphase domain free heteroepitaxial growth of GaP on Si substrate Kunert B, Nemeth I, Reinhard S, Volz K, Stolz W Thin Solid Films, 517(1), 140, 2008 |