1 |
Stochastic Control Framework for Determining Feasible Alternatives in Sampling Allocation Peng YJ, Song J, Xu J, Chong EKP IEEE Transactions on Automatic Control, 65(6), 2647, 2020 |
2 |
A model-based deep reinforcement learning method applied to finite-horizon optimal control of nonlinear control-affine system Kim JW, Park BJ, Yoo H, Oh TH, Lee JH, Lee JM Journal of Process Control, 87, 166, 2020 |
3 |
Demand side energy management of EV charging stations by approximate dynamic programming Wu Y, Ravey A, Chrenko D, Miraoui A Energy Conversion and Management, 196, 878, 2019 |
4 |
Symbolic Optimal Control Reissig G, Rungger M IEEE Transactions on Automatic Control, 64(6), 2224, 2019 |
5 |
Online H infinity control for completely unknown nonlinear systems via an identifier-critic-based ADP structure Lv YF, Na J, Ren XM International Journal of Control, 92(1), 100, 2019 |
6 |
Hedging Strategies: Electricity Investment Decisions under Policy Uncertainty Morris JF, Srikrishnan V, Webster MD, Reilly JM Energy Journal, 39(1), 101, 2018 |
7 |
An approximate dynamic programming method for the optimal control of Alkai-Surfactant-Polymer flooding Ge YL, Li SR, Chan P Journal of Process Control, 64, 15, 2018 |
8 |
Model predictive control under forecast uncertainty for optimal operation of buildings with integrated solar systems Liu X, Paritosh P, Awalgaonkar NM, Bilionis I, Karava P Solar Energy, 171, 953, 2018 |
9 |
Data-driven approximate value iteration with optimality error bound analysis Li YQ, Hou ZS, Feng YJ, Chi RH Automatica, 78, 79, 2017 |
10 |
Drift counteraction optimal control for deterministic systems and enhancing convergence of value iteration Zidek RAE, Kolmanovsky IV Automatica, 83, 108, 2017 |