1 |
The quest for the right kernel in Bayesian impulse response identification: The use of OBFs Darwish MAH, Pillonetto G, Toth R Automatica, 87, 318, 2018 |
2 |
Asymmetric Volterra Models Based on Ladder-Structured Generalized Orthonormal Basis Functions Machado JB, Campello RJGB, Amaral WC IEEE Transactions on Automatic Control, 60(11), 2879, 2015 |
3 |
Wiener system identification with generalized orthonormal basis functions Tiels K, Schoukens J Automatica, 50(12), 3147, 2014 |
4 |
A review on data-driven linear parameter-varying modeling approaches: A high-purity distillation column case study Bachnas AA, Toth R, Ludlage JHA, Mesbah A Journal of Process Control, 24(4), 272, 2014 |
5 |
Asymptotically optimal orthonormal basis functions for LPV system identification Toth R, Heuberger PSC, Van den Hof PMJ Automatica, 45(6), 1359, 2009 |
6 |
Non-asymptotic confidence regions for model parameters in the presence of unmodelled dynamics Campi MC, Ko S, Weyer E Automatica, 45(10), 2175, 2009 |
7 |
Exact Search Directions for Optimization of Linear and Nonlinear Models Based on Generalized Orthonormal Functions da Rosa A, Campello RJGB, Amaral WC IEEE Transactions on Automatic Control, 54(12), 2757, 2009 |
8 |
Hierarchical fuzzy models within the framework of orthonormal basis functions and their application to bioprocess control Campello RJGB, Von Zuben FJ, Amaral WC, Meleiro LAC, Maciel R Chemical Engineering Science, 58(18), 4259, 2003 |
9 |
A frequency-domain iterative identification algorithm using general orthonormal basis functions Akcay H, Heuberger P Automatica, 37(5), 663, 2001 |
10 |
A generalization of a standard inequality for Hardy space H-1 Akcay H Automatica, 37(11), 1853, 2001 |