1 |
Sequential modular simulation of circulating fluidized bed reactors Jafari H, Sheikhi A, Sotudeh-Gharebagh R Canadian Journal of Chemical Engineering, 98(4), 1003, 2020 |
2 |
Near-ambient temperature ozone decomposition kinetics on manganese oxide-based catalysts Tatibouet JM, Valange S, Touati H Applied Catalysis A: General, 569, 126, 2019 |
3 |
Highly active and humidity resistive perovskite LaFeO3 based catalysts for efficient ozone decomposition Gong SY, Xie Z, Li WM, Wu XF, Han N, Chen YF Applied Catalysis B: Environmental, 241, 578, 2019 |
4 |
Vanadium-doped MnO2 for efficient room-temperature catalytic decomposition of ozone in air Yang YJ, Zhang PY, Jia JB Applied Surface Science, 484, 45, 2019 |
5 |
The effect of ozone addition on combustion: Kinetics and dynamics Sun WT, Gao X, Wu B, Ombrello T Progress in Energy and Combustion Science, 73, 1, 2019 |
6 |
The effect of tungsten doping on the catalytic activity of alpha-MnO2 nanomaterial for ozone decomposition under humid condition Yang YJ, Jia JB, Liu Y, Zhang PY Applied Catalysis A: General, 562, 132, 2018 |
7 |
Nanostructured aerosols containing magnetite and alpha-iron for low-temperature ozone decomposition Rakitskaya T, Truba A, Ennan A, Volkova V Molecular Crystals and Liquid Crystals, 673(1), 81, 2018 |
8 |
Facile synthesis of Fe-modified manganese oxide with high content of oxygen vacancies for efficient airborne ozone destruction Jia JB, Yang WJ, Zhang PY, Zhang JY Applied Catalysis A: General, 546, 79, 2017 |
9 |
Transition metal doped cryptomelane-type manganese oxide catalysts for ozone decomposition Ma JZ, Wang CX, He H Applied Catalysis B: Environmental, 201, 503, 2017 |
10 |
Surface oxygen vacancy induced alpha-MnO2 nanofiber for highly efficient ozone elimination Zhu GX, Zhu JG, Jiang WJ, Zhang ZJ, Wang J, Zhu YF, Zhang QF Applied Catalysis B: Environmental, 209, 729, 2017 |