1 |
Microfluidic concentration of sample solutes using Joule heating effects under a combined AC and DC electric field Ge ZW, Jin LW, Yang C International Journal of Heat and Mass Transfer, 85, 158, 2015 |
2 |
Micellar affinity gradient focusing in a microfluidic chip with integrated bilinear temperature gradients Shameli SM, Glawdel T, Fernand VE, Ren CL Electrophoresis, 33(17), 2703, 2012 |
3 |
Concentration enhancement of sample solutes in a sudden expansion microchannel with Joule heating Ge ZW, Yang C, Tang GY International Journal of Heat and Mass Transfer, 53(13-14), 2722, 2010 |
4 |
Temperature gradient focusing in miniaturized free-flow electrophoresis devices Becker M, Mansouri A, Beilein C, Janasek D Electrophoresis, 30(24), 4206, 2009 |
5 |
Numerical modeling of Joule heating-induced temperature gradient focusing in microfluidic channels Tang GY, Yang C Electrophoresis, 29(5), 1006, 2008 |
6 |
Development of a temperature gradient focusing method for in situ extraterrestrial biomarker analysis Danger G, Ross D Electrophoresis, 29(15), 3107, 2008 |
7 |
Development of aptamer-based affinity assays using temperature gradient focusing: Minimization of the limit of detection Munson MS, Meacham JM, Ross D, Locascio LE Electrophoresis, 29(16), 3456, 2008 |
8 |
Counter-flow gradient electrofocusing Shackman JG, Ross D Electrophoresis, 28(4), 556, 2007 |
9 |
Taylor-Aris dispersion in temperature gradient focusing Huber DE, Santiago JG Electrophoresis, 28(14), 2333, 2007 |
10 |
Temperature gradient focusing in a PDMS/glass hybrid microfluidic chip Matsui T, Franzke J, Manz A, Janasek D Electrophoresis, 28(24), 4606, 2007 |