575 - 575 |
Multiple model approaches to modelling and control Johansen TA, Foss BA |
576 - 590 |
Process identification with multiple neural network models Eikens B, Karim MN |
591 - 604 |
Non-linear dynamic system identification: a multi-model approach Boukhris A, Mourot G, Ragot J |
605 - 619 |
Analytic Framework for blended multiple model systems using linear local models Leith DJ, Leithead WE |
620 - 628 |
On the interpretation of local models in blended multiple model structures Shorten R, Murray-Smith R, Bjorgan R, Gollee H |
629 - 642 |
Estimation of multiple order models in the delta-domain Kuznetsov AG, Bowyer RO, Clark DW |
643 - 658 |
Lazy learning for local modelling and control design Bontempi G, Birattari M, Bersini H |
659 - 675 |
Estimation and model predictive control of non-linear batch processes using linear parameter varying models Lakshmanan NM, Arkun Y |
676 - 685 |
Non-linear control system design via fuzzy modelling and LMIs Kiriakidis K |
686 - 701 |
Constrained quadratic stabilization of discrete-time uncertain non-linear multi-model systems using piecewise affine state-feedback Slupphaug O, Foss BA |
702 - 715 |
A parametrization of piecewise linear Lyapunov functions via linear programming Julian P, Guivant J, Desages A |
716 - 726 |
A minimax approach for multi-objective controller design using multiple models Piguet Y, Holmberg U, Longchamp R |
727 - 739 |
A multi-model solution for the control of chaos Duchateau A, Bradshaw NP, Bersini H |
740 - 754 |
Neural-fuzzy scheduling of H-infinity robust controllers for a high performance fighter aircraft under a Herbst-like manoeuvre Wang JL, Zhang WQ |