VI - VI |
The many faces of nanotech [Anonymous] |
587 - 589 |
Cubism at the nanoscale Toumey C |
590 - 591 |
A career in carbon Iijima S |
595 - 596 |
Quantum Devices - Nanowires charge towards integration Eriksson MA, Friesen M |
596 - 597 |
Biosensing - Taking charge of biomolecules Kinsella JM, Ivanisevic A |
598 - 599 |
Nanomaterials - Paper powers battery breakthrough Scrosati B |
599 - 600 |
Carbon materials - Nanosynthesis by candlelight Bottini M, Mustelin T |
600 - 600 |
Probe microscopy - Finding quantum dots inside nanowires Thomas J |
601 - 602 |
Surface patterning - Self-assembly works for superlattices Ortega JE, de Abajo FJG |
605 - 615 |
Carbon-based electronics Avouris P, Chen ZH, Perebeinos V |
617 - 621 |
Nanopatterning the electronic properties of gold surfaces with self-organized superlattices of metallic nanostructures Didiot C, Pons S, Kierren B, Fagot-Revurat Y, Malterre D |
622 - 625 |
A Ge/Si heterostructure nanowire-based double quantum dot with integrated charge sensor Hu YJ, Churchill HOH, Reilly DJ, Xiang J, Lieber CM, Marcus CM |
626 - 630 |
Highly scalable non-volatile and ultra-lowpower phase-change nanowire memory Lee SH, Jung Y, Agarwal R |
631 - 634 |
Magnetic exchange bias of more than 1 tesla in a natural mineral intergrowth McEnroe SA, Carter-Stiglitz B, Harrison RJ, Robinson P, Fabian K, McCammon C |
635 - 639 |
A virus-based single-enzyme nanoreactor Comellas-Aragones M, Engelkamp H, Claessen VI, Sommerdijk NAJM, Rowan AE, Christianen PCM, Maan JC, Verduin BJM, Cornelissen JJLM, Nolte RJM |
640 - 646 |
Highly selective dispersion of singlewalled carbon nanotubes using aromatic polymers Nish A, Hwang JY, Doig J, Nicholas RJ |
647 - 652 |
Controlling optical gain in semiconducting polymers with nanoscale chain positioning and alignment Martini IB, Craig IM, Molenkamp WC, Miyata H, Tolbert SH, Schwartz BJ |
653 - 659 |
Label-free and high-resolution protein/DNA nanoarray analysis using Kelvin probe force microscopy Sinensky AK, Belcher AM |