371 - 371 |
Conferences in the nanoworld [Anonymous] |
372 - 373 |
Indefinite particles Toumey C |
377 - 378 |
Nanodevices: Charge of the heavy brigade Zhirnov VV, Cavin RK |
378 - 379 |
Nanotoxicology: The asbestos analogy revisited Kane AB, Hurt RH |
380 - 381 |
Surface patterning: Ancients inspire modern memory Gregg JM |
381 - 382 |
Nanoelectronics: The strain of it all Ourmazd A |
383 - 384 |
Nanomechanics: Macromolecules flex their muscles Feringa BL, Browne WR |
384 - 385 |
Instrumentation: Carbon nanotubes on the brain Parpura V |
387 - 394 |
Progress towards monodisperse single-walled carbon nanotubes Hersam MC |
397 - 401 |
Tailoring the atomic structure of graphene nanoribbons by scanning tunnelling microscope lithography Tapaszto L, Dobrik G, Lambin P, Biro LP |
402 - 407 |
Individually addressable epitaxial ferroelectric nanocapacitor arrays with near Tb inch(-2) density Lee W, Han H, Lotnyk A, Schubert MA, Senz S, Alexe M, Hesse D, Baik S, Gosele U |
408 - 412 |
Prediction of very large values of magnetoresistance in a graphene nanoribbon device Kim WY, Kim KS |
413 - 417 |
Subwavelength direct-write nanopatterning using optically trapped microspheres McLeod E, Arnold CB |
418 - 422 |
Self-assembled DNA nanostructures for distance-dependent multivalent ligand-protein binding Rinker S, Ke YG, Liu Y, Chhabra R, Yan H |
423 - 428 |
Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study Poland CA, Duffin R, Kinloch I, Maynard A, Wallace WAH, Seaton A, Stone V, Brown S, MacNee W, Donaldson K |
429 - 433 |
Memristive switching mechanism for metal/oxide/metal nanodevices Yang JJ, Pickett MD, Li XM, Ohlberg DAA, Stewart DR, Williams RS |
434 - 439 |
Carbon nanotube coating improves neuronal recordings Keefer EW, Botterman BR, Romero MI, Rossi AF, Gross GW |