443 - 443 |
Physics in the nanoworld [Anonymous] |
444 - 447 |
Late lessons from early warnings for nanotechnology Hansen SF, Maynard A, Baun A, Tickner JA |
448 - 449 |
The production of knowledge Jones R |
450 - 451 |
Thailand resorts to nanotech Sandhu A |
455 - 457 |
Graphene - Nanoelectronics goes flat out Freitag M |
457 - 458 |
Nanomaterials - Let's twist again Deppert K, Wallenberg LR |
458 - 459 |
Smart textiles - Tough cotton Avila AG, Hinestroza JP |
459 - 460 |
Instrumentation - Astronomers look to nanotechnology Prober DE |
461 - 462 |
Probe microscopy - Scanning below the cell surface Sahin O |
465 - 475 |
Harnessing biological motors to engineer systems for nanoscale transport and assembly Goel A, Vogel V |
477 - 481 |
Formation of chiral branched nanowires by the Eshelby Twist Zhu J, Peng HL, Marshall AF, Barnett DM, Nix WD, Cui Y |
482 - 485 |
Ultrasonically driven nanomechanical single-electron shuttle Koenig DR, Weig EM, Kotthaus JP |
486 - 490 |
Contact and edge effects in graphene devices Lee EJH, Balasubramanian K, Weitz RT, Burghard M, Kern K |
491 - 495 |
Approaching ballistic transport in suspended graphene Du X, Skachko I, Barker A, Andrei EY |
496 - 500 |
Ultrasensitive hot-electron nanobolometers for terahertz astrophysics Wei J, Olaya D, Karasik BS, Pereverzev SV, Sergeev AV, Gershenson ME |
501 - 505 |
Imaging nanoparticles in cells by nanomechanical holography Tetard L, Passian A, Venmar KT, Lynch RM, Voy BH, Shekhawat G, Dravid VP, Thundat T |
506 - 511 |
Formation and enhanced biocidal activity of water-dispersable organic nanoparticles Zhang HF, Wang D, Butler R, Campbell NL, Long J, Tan BE, Duncalf DJ, Foster AJ, Hopkinson A, Taylor D, Angus D, Cooper AI, Rannard SP |
512 - 516 |
Engineered elastomeric proteins with dual elasticity can be controlled by a molecular regulator Cao Y, Li HB |