1 - 1 |
Special issue - Selected papers presented at the 11th International Meeting on Lithium Batteries - Monterey, CA, USA, 22-28 June 2002 - Preface McLarnon FR |
2 - 7 |
On the behavior of different types of graphite anodes Aurbach D, Teller H, Koltypin M, Levi E |
8 - 15 |
Purification process of natural graphite as anode for Li-ion batteries: chemical versus thermal Zaghib K, Song X, Guerfi A, Rioux R, Kinoshita K |
16 - 23 |
Preparation and characterization of carbon nanotubes for energy storage Wang GX, Ahn JH, Yao J, Lindsay M, Liu HK, Dou SX |
24 - 27 |
Effects of manganese acetate on the anodic performance of carbon nanotubes for Li ion rechargeable batteries Ishihara T, Kawahara A, Nishiguchi H, Yoshio M, Takita Y |
28 - 33 |
A new approach for the preparation of anodes for Li-ion batteries based on activated hard carbon cloth with pore design Isaev I, Salitra G, Soffer A, Cohen YS, Aurbach D, Fischer J |
34 - 38 |
Electrochemical performance of carbon materials derived from paper mill sludge Sandi G, Khalili NR, Lu WQ, Prakash J |
39 - 44 |
High-capacity carbons prepared from acrylonitrile-butadiene-styrene terpolymer for use as an anode material in lithium-ion batteries Fey GTK, Lee DC, Lin YY |
45 - 49 |
Tin-based composite materials as anode materials for Li-ion batteries Ahn JH, Wang GX, Yao J, Liu HK, Dou SX |
50 - 55 |
Ce-Sn intermetallic compounds as new anode materials for rechargeable lithium batteries Sakaguchi H, Honda H, Akasaka Y, Esaka T |
56 - 59 |
High-capacity composite anodes with SnSb and Li2.6Co0.4N for solid polymer electrolyte cells Yang J, Takeda Y, Capiglia C, Liu XD, Imanishi N, Yamamoto O |
60 - 63 |
Particle size and performance of SnS2 anodes for rechargeable lithium batteries Mukaibo H, Yoshizawa A, Momma T, Osaka T |
64 - 68 |
Alternative anode materials for lithium-ion batteries: a study of Ag3Sb Vaughey JT, Fransson L, Swinger HA, Edstrom K, Thackeray MM |
69 - 75 |
A new lithium-copper-iron-oxide as a negative electrode material for lithium-ion batteries Chang SK, Kim HJ, Hong ST |
76 - 83 |
Expanded metal a novel anode for Li-ion polymer batteries Zaghib K, Gauthier M, Armand M |
84 - 87 |
Al-based anode materials for Li-ion batteries Lindsay MJ, Wang GX, Liu HK |
88 - 94 |
Nano-particle Li4Ti5O12 spinel as electrode for electrochemical generators Guerfi A, Sevigny S, Lagace M, Hovington P, Kinoshita K, Zaghib K |
95 - 100 |
The formation and properties of amorphous silicon as negative electrode reactant in lithium systems Netz A, Huggins RA, Weppner W |
101 - 105 |
LiNiVO4-promising thin films for use as anode material in microbatteries Reddy MV, Wannek C, Pecquenard B, Vinatier P, Levasseur A |
106 - 109 |
Sn-Zr-Ag alloy thin-film anodes Kim YL, Lee SJ, Baik HK, Lee SM |
110 - 112 |
Amorphous and nanocrystalline Mg2Si thin-film electrodes Song SW, Striebel KA, Song XY, Cairns EJ |
113 - 116 |
Si-Zr alloy thin-film anodes for microbatteries Lee SJ, Lee HY, Baik HK, Lee SM |
117 - 120 |
Si (-Zr)/Ag multilayer thin-film anodes for microbatteries Lee SJ, Lee HY, Park Y, Baik HK, Lee SM |
121 - 124 |
Stabilization of the spinel structure in Li1+delta Mn2-delta O4 obtained by sol-gel method Dziembaj R, Molenda M |
125 - 129 |
Crystal structure and cathode performance dependence on oxygen content of LiMn1.5Ni0.5O4 as a cathode material for secondary lithium batteries Idemoto Y, Narai H, Koura N |
130 - 133 |
LiMn2-xCrxO4 spinel prepared by a modified citrate route with combustion Du K, Xie JY, Wang JL, Zhang H |
134 - 138 |
The effects of heat-treatment temperature on the retention capacities of spinels prepared by the Pechini process Wu SH, Chen HL |
139 - 144 |
Structural and electrochemical evaluation of (1-x)Li2TiO3 center dot(x)LiMn0.5Ni0.5O2 electrodes for lithium batteries Johnson CS, Kim JS, Kropf AJ, Kahaian AJ, Vaughey JT, Thackeray MA |
145 - 149 |
A study of layered lithium manganese oxide cathode materials Eriksson TA, Doeff MM |
150 - 155 |
Comparative study of Li(Ni0.5-xMn0.5-xM2x')O-2 (M' = Mg, Al, Co, Ni, Ti; x=0, 0.025) cathode materials for rechargeable lithium batteries Kang SH, Amine K |
156 - 160 |
Lithium insertion material of LiNi1/2Mn1/2O2 for advanced lithium-ion batteries Makimura Y, Ohzuku T |
161 - 165 |
Synthesis and electrochemical properties of layered Li[Li0.15Ni(0.275-x/2)AlxMn(0.575-x/2)]O-2 materials Park SH, Sun YK |
166 - 170 |
Electrochemical performance of Li[LixNi(1-3x)/2Mn(1+x)/2]O-2 cathode materials synthesized by a sol-gel method Kim JH, Sun YK |
171 - 174 |
Novel lithium insertion material of LiCo1/3Ni1/3Mn1/3O2 for advanced lithium-ion batteries Yabuuchi N, Ohzuku T |
175 - 177 |
LiNi0.5Co0.5O2 as a long-lived positive active material for lithium-ion batteries Belharouak I, Tsukamoto H, Amine K |
178 - 183 |
Electrochemical and thermal behavior of aluminum- and magnesium-doped spherical lithium nickel cobalt mixed oxides Li1-x(Ni1-y-zCoyMz)O-2 (M = Al, Mg) Albrecht S, Kumpers J, Kruft M, Malcus S, Vogler C, Wahl M, Wohlfahrt-Mehrens M |
184 - 188 |
Synthesis and characterization of LiCoxMnyNi1-x-yO2 as a cathode material for secondary lithium batteries Chen Y, Wang GX, Konstantinov K, Liu HK, Dou S |
189 - 194 |
Multiple-ion-doped lithium nickel oxides as cathode materials for lithium-ion batteries Wang GX, Bewlay S, Yao J, Chen Y, Guo ZP, Liu HK, Dou SX |
195 - 200 |
Stoichiometry-controlled high-performance LiCoO2 electrode materials prepared by a spray solution technique Konstantinov K, Wang GX, Yao J, Liu HK, Dou SX |
201 - 204 |
Preparation and lithium insertion property of layered LixV2O5 center dot nH(2)O Eguchi M, Ozawa K, Sakka Y |
205 - 210 |
Lithium intercalation in electrodeposited vanadium oxide bronzes Andrukaitis E |
211 - 215 |
Emulsion drying preparation of layered LiMnxCr1-xO2 solid solution and its application to Li-ion battery cathode material Myung ST, Komaba S, Hirosaki N, Kumagai N, Arai K, Kodama R, Terada Y, Nakai I |
216 - 220 |
The electrochemical behavior of xLiNiO(2)center dot (1-x)Li2RuO3 and Li2Ru1-yZryO3 electrodes in lithium cells Moore GJ, Johnson CS, Thackeray MM |
221 - 225 |
Preparation of orthorhornbic LiMnO2 material via the sol-gel process Guo ZP, Konstantinov K, Wang GX, Liu HK, Dou SX |
226 - 231 |
MnO2 (alpha-, beta-, gamma-) compounds prepared by hydrothermal-electrochemical synthesis: characterization, morphology, and lithium insertion behavior Hill LI, Verbaere A, Guyomard D |
232 - 238 |
Olivine-type cathodes achievements and problems Yamada A, Hosoya M, Chung SC, Kudo Y, Hinokuma K, Liu KY, Nishi Y |
239 - 246 |
Performance of LiFePO4 as lithium battery cathode and comparison with manganese and vanadium oxides Yang SF, Song YN, Ngala K, Zavalij PY, Whittingham MS |
247 - 251 |
Fine-particle lithium iron phosphate LiFePO4 synthesized by a new low-cost aqueous precipitation technique Arnold G, Garche J, Hemmer R, Strobele S, Vogler C, Wohlfahrt-Mehrens A |
252 - 257 |
Comparison between different LiFePO4 synthesis routes and their influence on its physico-chemical properties Franger S, Le Cras F, Bourbon C, Rouault H |
258 - 261 |
Synthesis of LiFePO4 cathode material by microwave processing Higuchi M, Katayama K, Azuma Y, Yukawa M, Suhara M |
262 - 265 |
Phosphate-stabilized lithium intercalation compounds Richardson TJ |
266 - 272 |
Performance characteristics of lithium vanadium phosphate as a cathode material for lithium-ion batteries Saidi MY, Barker J, Huang H, Swoyer JL, Adamson G |
273 - 277 |
Vanadyl phosphates Of VOPO4 as a cathode of Li-ion rechargeable batteries Azmi BA, Ishihara T, Nishiguchi H, Takita Y |
278 - 284 |
A comparative structural and electrochemical study of monoclinic Li3Fe2(PO4)(3) and Li3V2(PO4)(3) Patoux S, Wurm C, Morcrette M, Rousse G, Masquelier C |
285 - 289 |
A new type of orthorhombic LiFeO2 with advanced battery performance and its structural change during cycling Lee YS, Sato S, Sun YK, Kobayakawa K, Sato Y |
290 - 294 |
Low-crystalline beta-FeOOH and vanadium ferrite for positive active materials of lithium secondary cells Funabiki A, Yasuda H, Yamachi M |
295 - 299 |
Electrochemical and electron microscopic characterization of thin-film LiCoO2 cathodes under high-voltage cycling conditions Jang YI, Dudney NJ, Blom DA, Allard LF |
300 - 304 |
Analysis of thin-film lithium batteries with cathodes of 50 nm to 4 mu m thick LiCoO2 Dudney NJ, Jang YI |
305 - 309 |
Stable cycling of thin-film vanadium oxide electrodes between 4 and 0 V in lithium batteries Liu P, Lee SH, Tracy CE, Turner JA |
310 - 315 |
Vanadia xerogel nanocathodes used in lithium microbatteries Dewan C, Teeters D |
316 - 320 |
Poly(2,5-dihydroxy-1,4-benzoquinone-3,6-methylene): a new organic polymer as positive electrode material for rechargeable lithium batteries Le Gall T, Reiman KH, Grossel MC, Owen JR |
321 - 325 |
Chemically synthesized high molecular weight poly(2,2'-dithiodianiline) (PDTDA) as a cathode material for lithium rechargeable batteries Lee YG, Ryu KS, Chang SH |
326 - 329 |
Liquid electrolytes for lithium and lithium-ion batteries Blomgren GE |
330 - 337 |
The role of Li-ion battery electrolyte reactivity in performance decline and self-discharge Sloop SE, Kerr JB, Kinoshita K |
338 - 342 |
Novel alkyl methyl carbonate solvents for lithium-ion batteries Vetter J, Novak P |
343 - 348 |
Nonaqueous electrolytes for wide-temperature-range operation of Li-ion cells Jow TR, Ding MS, Xu K, Zhang SS, Allen JL, Amine K, Henriksen GL |
349 - 358 |
Improved low-temperature performance of lithium-ion cells with quaternary carbonate-based electrolytes Smart MC, Ratnakumar BV, Whitcanack LD, Chin KB, Surampudi S, Croft H, Tice D, Staniewicz R |
359 - 367 |
Improved performance of lithium-ion cells with the use of fluorinated carbonate-based electrolytes Smart MC, Ratnakumar BV, Ryan-Mowrey VS, Surampudi S, Prakash GKS, Hub J, Cheung I |
368 - 372 |
Acrylic acid nitrile, a film-forming electrolyte component for lithium-ion batteries, which belongs to the family of additives containing vinyl groups Santner HJ, Moller KC, Ivanco J, Ramsey MG, Netzer FP, Yamaguchi S, Besenhard JO, Winter M |
373 - 377 |
Butyrolactone derivatives as electrolyte additives for lithium-ion batteries with graphite anodes Matsuo Y, Fumita K, Fukutsuka T, Sugie Y, Koyama H, Inoue K |
378 - 382 |
Inorganic electrolyte additives to suppress the degradation of graphite anodes by dissolved Mn(II) for lithium-ion batteries Komaba S, Kaplan B, Ohtsuka T, Kataoka Y, Kumagai N, Groult H |
383 - 387 |
Flame-retardant additives for lithium-ion batteries Hyung YE, Vissers DR, Amine K |
388 - 392 |
No-flash-point electrolytes applied to amorphous carbon/Li1+xMn2O4 cells for EV use Arai J |
393 - 398 |
Effect of cyclic phosphate additive in non-flammable electrolyte Ota H, Kominato A, Chun WJ, Yasukawa E, Kasuya S |
399 - 402 |
Advanced electrolyte and electrode materials for lithium polymer batteries Croce F, D'Epifanio A, Hassoun J, Reale P, Scrosati B |
403 - 408 |
Composite polymer electrolytes of poly(ethylene oxide)/BaTiO3/Li salt with hyperbranched polymer Itoh T, Miyamura Y, Ichikawa Y, Uno T, Kubo M, Yamamoto O |
409 - 414 |
Effect of concentration and grain size of alumina filler on the ionic conductivity enhancement of the (PEO)(9)LiCF3SO3 : Al2O3 composite polymer electrolyte Dissanayake MAKL, Jayathilaka PARD, Bokalawala RSP, Albinsson I, Mellander BE |
415 - 421 |
Electrochemical characteristics of two types of PEO-based composite electrolyte with functional SiO2 Kim JW, Ji KS, Lee JP, Park JW |
422 - 426 |
Nanoparticle-dispersed PEO polymer electrolytes for Li batteries Ahn JH, Wang GX, Liu HK, Dou SX |
427 - 431 |
An investigation of poly(ethylene oxide)/saponite-based composite electrolytes Wen ZY, Gu ZH, Itoh T, Lin ZX, Yamamoto O |
432 - 437 |
A study of cross-linked PEO gel polymer electrolytes using bisphenol A ethoxylate diacrylate: ionic conductivity and mechanical properties Kang YK, Cheong K, Noh KA, Lee C, Seung DY |
438 - 441 |
Novel lithium salts exhibiting high lithium ion transference numbers in polymer electrolytes Fujinami T, Buzoujima Y |
442 - 447 |
New interpenetrating network type poly(siloxane-g-ethylene oxide) polymer electrolyte for lithium battery Oh B, Vissers D, Zhang Z, West R, Tsukamoto H, Amine K |
448 - 453 |
Solid polymer electrolytes based on cross-linked poly siloxane-delta-oligo(ethylene oxide): ionic conductivity and electrochemical properties Kang Y, Lee W, Suh DH, Lee C |
454 - 459 |
Thin and flexible lithium-ion batteries: investigation of polymer electrolytes Saunier J, Alloin F, Sanchez JY, Caillon G |
460 - 464 |
Charge-discharge studies on a lithium cell composed of PVdF-HFP polymer membranes prepared by phase inversion technique with a nanocomposite cathode Stephan AM, Teeters D |
465 - 468 |
The use of novel VDF-HFP-CTFE terpolymers in lithium-ion polymer cells Jarvis CR, Macklin AJ, Teagle DA, Cullen J, Macklin WJ |
469 - 472 |
Preparation and characterization of porous polyacrylonitrile membranes for lithium-ion polymer batteries Min HS, Ko JM, Kim DW |
473 - 477 |
Characteristics of gel alkylene oxide polymer electrolytes containing gamma-butyrolactone Matsuda Y, Fukushima T, Katoh Y, Ishiko E, Nishiura M, Kikuta M, Kono M |
478 - 481 |
Electrochemical studies of gel polymer electrolytes based on methyl methacrylate-styrene copolymers Jo SI, Sohn HJ, Kang DW, Kim DW |
482 - 486 |
Electrochemical properties of poly(tetra ethylene glycol diacrylate)-based gel electrolytes for lithium-ion polymer batteries Kim HS, Shin JH, Moon SI, Yun MS |
487 - 491 |
A novel approach for development of improved polymer electrolytes for lithium batteries Morris RS, Dixon BG |
492 - 496 |
Polymer nanocomposites for lithium battery applications Sandi G, Carrado KA, Joachin H, Lu W, Prakash J |
497 - 503 |
Electrode-solution interactions in Li-ion batteries: a short summary and new insights Aurbach D |
504 - 510 |
The study of capacity fading processes of Li-ion batteries: major factors that play a role Markovsky B, Rodkin A, Cohen YS, Palchik O, Levi E, Aurbach D, Kim HJ, Schmidt M |
511 - 516 |
Diagnosis of power fade mechanisms in high-power lithium-ion cells Abraham DP, Liu J, Chen CH, Hyung YE, Stoll M, Elsen N, MacLaren S, Twesten R, Haasch R, Sammann E, Petrov I, Amine K, Henriksen G |
517 - 521 |
Development and testing of nanomaterials for rechargeable lithium batteries Odani A, Nimberger A, Markovsky B, Sominski E, Levi E, Kumar VG, Motiei A, Gedanken A, Dan P, Aurbach D |
522 - 527 |
Electrochemically lithiated graphite characterised by photoelectron spectroscopy Andersson AM, Henningson A, Siegbahn H, Jansson U, Edstrom K |
528 - 537 |
A study on electrolyte interactions with graphite anodes exhibiting structures with various amounts of rhombohedral phase Kohs W, Santner HJ, Hofer F, Schrottner H, Doninger J, Barsukov I, Buqa H, Albering JH, Moller KC, Besenhard JO, Winter M |
538 - 542 |
Electrochemical behavior of graphite anode at elevated temperatures in organic carbonate solutions Levi MD, Wang C, Gnanaraj JS, Aurbach D |
543 - 549 |
The role of graphite surface group chemistry on graphite exfoliation during electrochemical lithium insertion Spahr ME, Wilhelm H, Palladino T, Dupont-Pavlovsky N, Goers D, Joho F, Novak P |
550 - 554 |
Microprobe study of the effect of Li intercalation on the structure of graphite Kostecki R, McLarnon F |
555 - 560 |
AFM study of surface film formation on a composite graphite electrode in lithium-ion batteries Jeong SK, Inaba M, Iriyama Y, Abe T, Ogumi Z |
561 - 566 |
In situ characterization of the SEI formation on graphite in the presence of a vinylene group containing film-forming electrolyte additives Moller KC, Santner HJ, Kern W, Yamaguchi S, Besenhard JO, Winter M |
567 - 571 |
XAFS and TOF-SIMS analysis of SEI layers on electrodes Ota H, Akai T, Namita H, Yamaguchi S, Nomura M |
572 - 575 |
Morphology-stable alloy/C composites for lithium insertion Liu Y, Xie JY, Yang J |
576 - 580 |
Microscopic structure of tin-borate and tin-boratephosphate glasses Gejke C, Zanghellini E, Swenson J, Brojesson L |
581 - 584 |
Structural and electronic modifications induced by lithium insertion in Sn-based oxide glasses Robert F, Morato F, Chouvin J, Aldon L, Lippens PE, Fourcade JO, Jumas JC, Simon B, Biensan P |
585 - 590 |
Lithium insertion mechanism in Sb-based electrode materials from Sb-121 Mossbauer spectrometry Aldon L, Garcia A, Olivier-Fourcade J, Jumas JC, Fernandez-Madrigal FJ, Lavela P, Vicente CP, Tirado JL |
591 - 596 |
Li insertion/extraction reaction at a Si film evaporated on a Ni foil Ohara S, Suzuki J, Sekine K, Takamura T |
597 - 603 |
Study on the decomposition mechanism of alkyl carbonate on lithium metal by pyrolysis-gas chromatography-mass spectroscopy Mogi R, Inaba M, Iriyama Y, Abe T, Ogumi Z |
604 - 609 |
Electrochemically-driven solid-state amorphization in lithium-metal anodes Limthongkul P, Jang YI, Dudney NJ, Chiang YM |
610 - 616 |
Interfacial enhancement between lithium electrode and polymer electrolytes Choi NS, Lee YM, Park JH, Park JK |
617 - 620 |
Electrochemical characteristics of calcium in organic electrolyte solutions and vanadium oxides as calcium hosts Hayashi M, Arai H, Ohtsuka H, Sakurai Y |
621 - 625 |
Anode properties of calcite-type MBO3 (M : V, Fe) Okada S, Tonuma T, Uebo Y, Yamaki J |
626 - 630 |
Phase transition in the spinel Li4Ti5O12 induced by lithium insertion - Influence of the substitutions Ti/V, Ti/Mn, Ti/Fe Kubiak P, Garcia A, Womes M, Aldon L, Olivier-Fourcade J, Lippens PE, Jumas JC |
631 - 636 |
Lithium-7 nuclear magnetic resonance and TiK-edge X-ray absorption spectroscopic investigation of electrochemical lithium insertion in Li4/3+xTi5/3O4 Ronci F, Stallworth PE, Alamgir F, Schiros T, Van Sluytman J, Guo XD, Reale P, Greenbaum S, denBoer M, Scrosati B |
637 - 643 |
Thermodynamic and kinetic approaches to lithium intercalation into Li[Ti5/3Li1/3]O-4 film electrode Jung KN, Pyun S, Kim SW |
644 - 648 |
Crystal and electronic structures of superstructural Li1-x[Co1/3Ni1/3Mn1/3]O-2 (0 <= x <= 1) Koyama Y, Tanaka I, Adachi H, Makimura Y, Ohzuku T |
649 - 653 |
Li-6 MAS NMR and in situ X-ray studies of lithium nickel manganese oxides Yoon WS, Kim N, Yang XQ, McBreen J, Grey CP |
654 - 657 |
First-principles calculations on LixNiO2: phase stability and monoclinic distortion de Dompablo MEAY, Ceder G |
658 - 663 |
Electroanalytical and thermal stability studies of multi-doped lithium nickel cobalt oxides Fey GTK, Chen JG, Subramanian V |
664 - 668 |
A comparative study of the thermal stability of Li1-xCoO2 and Li3-xCrMnO5 in the presence of 1 M LiPF6 in 3 : 7 EC/DEC electrolyte using accelerating rate calorimetry Argue S, Davidson IJ, Ammundsen B, Paulsen J |
669 - 673 |
Electronic state of cobalt and oxygen ions in stoichiometric and nonstoichiornetric Li1+xCoO2 before and after delithiation according to XPS and DRS Kosova NV, Kaichev VV, Bukhtiyarov VI, Kellerman DG, Devyatkina ET, Larina TV |
674 - 679 |
A transmission electron microscopy study of cycled LiCoO2 Gabrisch H, Yazami R, Fultz B |
680 - 685 |
Cold neutron depth protiling of lithium-ion battery materials Lamaze GP, Chen-Mayer HH, Becker DA, Vereda F, Goldner RB, Haas T, Zerigian P |
686 - 689 |
Charge/discharge characteristics of LiMnO2 composite for lithium polymer battery Kim JU, Jo YJ, Park GC, Jeong WJ, Gu HB |
690 - 694 |
Improvement of electrode performances of spinel LiMn2O4 prepared by mechanical alloying and subsequent firing Jeong WT, Joo JH, Lee KS |
695 - 700 |
Li1.01Mn1.97O4 surface modification by poly (3,4-ethylenedioxythiophene) Arbizzani C, Balducci A, Mastragostino M, Rossi M, Soavi F |
701 - 705 |
Structure stabilization of LiMn2O4 cathode material by bimetal dopants Tsai YW, Santhanam R, Hwang BJ, Hu SK, Sheu HS |
706 - 709 |
Changes in electronic structure of the electrochemically Li-ion deintercalated LiMn2O4 system investigated by soft X-ray absorption spectroscopy Yoon WS, Chung KY, Oh KH, Kim KB |
710 - 712 |
Effect of film stress on electrochemical properties of lithium manganese oxide thin films Moon HS, Lee W, Reucroft PJ, Park JW |
713 - 716 |
Characterization of protective-layer-coated LiMn2O4 cathode thin films Moon HS, Lee SW, Lee YK, Park JW |
717 - 720 |
Improvement of cyclability of LiMn2O4 thin films by transition-metal substitution Moon HS, Park JW |
721 - 726 |
Local structure transformation of nano-sized Al-doped LiMn2O4 sintered at different temperatures Lee JF, Tsai YW, Santhanam R, Hwang BJ, Yang MH, Liu DG |
727 - 732 |
Structure transformation of LiAl0.15Mn1.85O4 cathode material during charging and discharging in aqueous solution Hwang BJ, Tsai YW, Santhanam R, Hu SK, Sheu HS |
733 - 737 |
Relation between crystal structures, electronic structures, and electrode performances of LiMn2-xMxO4 (M = Ni, Zn) as a cathode active material for 4V secondary Li batteries Ito Y, Idemoto Y, Tsunoda Y, Koura N |
738 - 742 |
Dissolution behavior of chromium-ion doped spinel lithium manganate at elevated temperatures Wang HC, Lu CH |
743 - 748 |
Spectroscopic studies of the structural transitions in positive electrodes for lithium batteries Julien CM, Massot M |
749 - 754 |
LiFePO4 storage at room and elevated temperatures Iltchev N, Chen YK, Okada S, Yamaki J |
755 - 759 |
Experimental and computational study of the structure and electrochemical properties of monoclinic LixM2(PO4)(3) compounds Morgan D, Ceder G, Saidi MY, Barker J, Swoyer J, Huang H, Adamson G |
760 - 765 |
Investigation of lithium transport through an electrodeposited vanadium pentoxide film electrode Lee JW, Pyun SI |
766 - 769 |
Electrochemical properties of VO-flyash composite for lithium polymer battery Kim JU, Gu HB |
770 - 773 |
The role of carbon black distribution in cathodes for Li ion batteries Dominko R, Gaberscek M, Drofenik J, Bele M, Pejovnik S, Jamnik J |
774 - 777 |
Application of porous polymer to composite electrodes with inorganic solid electrolytes Sasaki H, Takada K, Inada T, Kajiyama A, Kondo S, Watanabe M |
778 - 783 |
Combinatorial arrays and parallel screening for positive electrode discovery Spong AD, Vitins G, Guerin S, Hayden BE, Russell AE, Owen JR |
784 - 788 |
Anodic behavior of aluminum current collector in LiTFSI solutions with different solvent compositions Morita M, Shibata T, Yoshimoto N, Ishikawa M |
789 - 793 |
Thermal stability of electrolytes with LixCoO2 cathode or lithiated carbon anode Yamaki J, Baba Y, Katayama N, Takatsuji H, Egashira M, Okada S |
794 - 798 |
The use of accelerating rate calorimetry (ARC) for the study of the thermal reactions of Li-ion battery electrolyte solutions Gnanaraj JS, Zinigrad E, Asraf L, Gottlieb HE, Sprecher M, Aurbach D, Schmidt M |
799 - 804 |
A comparison among LiPF6, LiPF3(CF2CF3)(3) (LiFAP), and LiN(SO2CF2CF3)(2) (LiBETI) solutions: electrochemical and thermal studies Gnanaraj JS, Zinigrad E, Levi MD, Aurbach D, Schmidt M |
805 - 810 |
Thermal stability of lithium-ion battery electrolytes Ravdel B, Abraham KM, Gitzendanner R, DiCarlo J, Lucht B, Campion C |
811 - 814 |
Comparison of the thermal and electrochemical properties of LiPF6 and LiN(SO2C2F5)(2) salts in organic electrolytes Nagasubramanian G |
815 - 820 |
MRSST a new method to evaluate thermal stability of electrolytes for lithium ion batteries Botte GG, Bauer TJ |
821 - 825 |
AC-impedance measurements during thermal runaway process in several lithium/polymer batteries Uchida I, Ishikawa H, Mohamedi M, Umeda M |
826 - 832 |
DSC study on the thermal stability of solid polymer electrolyte cells Capiglia C, Yang J, Imanishi N, Hirano A, Takeda Y, Yamamoto O |
833 - 837 |
Battery dimensional changes occurring during charge/discharge cycles - thin rectangular lithium ion and polymer cells Lee JH, Lee HM, Ahn S |
838 - 843 |
Modeling of lithium-ion batteries Newman J, Thomas KE, Hafezi H, Wheeler DR |
844 - 849 |
Heats of mixing and of entropy in porous insertion electrodes Thomas KE, Newman J |
850 - 855 |
The entropy and enthalpy of lithium intercalation into graphite Reynier Y, Yazami R, Fultz B |
856 - 858 |
Computational chemistry: design and experimental verification of pre-designed heteropolymer electrolytes for rechargeable lithium batteries Dixon BG, Morris RS |
859 - 864 |
Properties of large Li ion cells using a nickel based mixed oxide Broussely A, Blanchard P, Biensan P, Planchat JP, Nechev K, Staniewicz RJ |
865 - 869 |
Power fade and capacity fade resulting from cycle-life testing of Advanced Technology Development Program lithium-ion batteries Wright RB, Christophersen JP, Motloch CG, Belt JR, Ho CD, Battaglia VS, Barnes JA, Duong TQ, Sutula RA |
870 - 873 |
Accelerated calendar and pulse life analysis of lithium-ion cells Jungst RG, Nagasubramanian G, Case HL, Liaw BY, Urbina A, Paez TL, Doughty DH |
874 - 886 |
Correlation of Arrhenius behaviors in power and capacity fades with cell impedance and heat generation in cylindrical lithium-ion cells Liaw BY, Roth EP, Jungst RG, Nagasubramanian G, Case HL, Doughty DH |
887 - 892 |
Performance of large-scale secondary lithium batteries for electric vehicles and home-use load-leveling systems Takei K, Ishihara K, Kumai K, Iwahori T, Miyake K, Nakatsu T, Terada N, Arai N |
893 - 896 |
Manganese-based lithium batteries for hybrid electric vehicle applications Horiba T, Hironaka K, Matsumura T, Kai T, Koseki M, Muranaka Y |
897 - 901 |
Development of 16 kWh power storage system applying Li-ion batteries Adachi K, Tajima H, Hashimoto T, Kobayashi K |
902 - 905 |
Study of life evaluation methods for Li-ion batteries for backup applications Asakura K, Shimomura M, Shodai T |
906 - 910 |
Lithium batteries for aerospace applications: 2003 Mars Exploration Rover Ratnakumar BV, Smart MC, Kindler A, Frank H, Ewell R, Surampudi S |
911 - 913 |
Lithium-ion testing for spacecraft applications Fellner JP, Loeber GJ, Vukson SP, Riepenhoff CA |
914 - 917 |
Multi-layered Li-ion rechargeable batteries for a high-voltage and high-current solid-state power source Baba M, Kumagai N, Fujita H, Ohta K, Nishidate K, Komaba S, Kaplan B, Groult H, Devilliers D |
918 - 923 |
Self-discharge study of LiCoO2 cathode materials Ozawa Y, Yazami R, Fultz B |
924 - 928 |
Charge-discharge properties of a cathode prepared with ketjen black as the electro-conductive additive in lithium ion batteries Kuroda S, Tobori N, Sakuraba M, Sato Y |
929 - 933 |
Influence of capacity fading on commercial lithium-ion battery impedance Osaka T, Nakade S, Rajamaki M, Momma T |
934 - 937 |
Effect of electrode density on cycle performance and irreversible capacity loss for natural graphite anode in lithium-ion batteries Shim J, Striebel KA |
938 - 942 |
Li2CuO2 as an additive for capacity enhancement of lithium ion cells Vitins G, Raekelboom EA, Weller MT, Owen JR |
943 - 947 |
A comparative study on the effect of electrolyte/additives on the performance of ICP383562Li-ion polymer (soft-pack) cells Contestabile M, Morselli M, Paraventi R, Neat RJ |
948 - 950 |
Silicone as a binder in composite electrolytes Inada T, Takada K, Kajiyama A, Sasaki H, Kondo S, Watanabe M, Murayama M, Kanno R |
951 - 954 |
LiFePO4/gel/natural graphite cells for the BATT program Striebel K, Guerfi A, Shim J, Armand M, Gauthier M, Zaghib K |
955 - 958 |
Cycling performance of low-cost lithium ion batteries with natural graphite and LiFePO4 Shim J, Striebel KA |
959 - 963 |
Three-volt lithium-ion battery with Li[Ni1/2Mn3/2]O-4 and the zero-strain insertion material of Li[Li1/3Ti5/3]O-4 Ariyoshi K, Yamamoto S, Ohzuku T |
964 - 972 |
Electrochemical performance of lithium/sulfur batteries with protected Li anodes Lee YM, Choi NS, Park JH, Park JK |
973 - 978 |
Advanced lithium batteries for implantable medical devices: mechanistic study of SVO cathode synthesis Takeuchi KJ, Leising RA, Palazzo MJ, Marschilok AC, Takeuchi ES |
979 - 985 |
Mass transport limitation in implantable defibrillator batteries Schmidt C, Tam G, Scott E, Norton J, Chen K |