1 - 11 |
An impressive approach to solving the ongoing stability problems of LiCoPO4 cathode: Nickel oxide surface modification with excellent core-shell principle Ornek A |
12 - 17 |
Enhanced energy capacity of lithium-oxygen batteries with ionic liquid electrolytes by addition of ammonium ions Matsuda S, Uosaki K, Nakanishi S |
18 - 26 |
Nanoconfined phosphorus film coating on interconnected carbon nanotubes as ultrastable anodes for lithium ion batteries Xu ZW, Zeng Y, Wang LY, Li N, Chen C, Li CY, Li J, Lv HM, Kuang LY, Tian X |
27 - 35 |
Ultra-uniform PdBi nanodots with high activity towards formic acid oxidation Xu H, Zhang K, Yan B, Wang J, Wang CQ, Li SM, Gu ZL, Du YK, Yang P |
36 - 46 |
Operando lithium plating quantification and early detection of a commercial LiFePO4 cell cycled under dynamic driving schedule Ansean D, Dubarry M, Devie A, Liaw BY, Garcia VM, Viera JC, Gonzalez M |
47 - 55 |
Lithium loss in the solid electrolyte interphase: Lithium quantification of aged lithium ion battery graphite electrodes by means of laser ablation inductively coupled plasma mass spectrometry and inductively coupled plasma optical emission spectroscopy Schwieters T, Evertz M, Mense M, Winter M, Nowak S |
56 - 71 |
Nonlinear observation of internal states of fuel cell cathode utilizing a high-order sliding-mode algorithm Xu LF, Hu JM, Cheng SL, Fang C, Li JQ, Ouyang MG, Lehnert W |
72 - 79 |
MnO2-GO double-shelled sulfur (S@MnO2@GO) as a cathode for Li-S batteries with improved rate capability and cyclic performance Huang XK, Shi KY, Yang J, Mao G, Chen JH |
80 - 88 |
P2-type Na2/3Mn1-xAlxO2 cathode material for sodium-ion batteries: Al-doped enhanced electrochemical properties and studies on the electrode kinetics Pang WL, Zhang XH, Guo JZ, Li JY, Yan X, Hou BH, Guan HY, Wu XL |
89 - 96 |
Ultrathin CoS2 shells anchored on Co3O4 nanoneedles for efficient hydrogen evolution electrocatalysis Li TT, Niu KL, Yang MH, Shrestha NK, Gao ZD, Song YY |
97 - 102 |
Enabling steady graphite anode cycling with high voltage, additive-free, sulfolane-based electrolyte: Role of the binder Zhang T, de Meatza I, Qi X, Paillard E |
103 - 114 |
Lithium-ion battery aging mechanisms and life model under different charging stresses Gao Y, Jiang JC, Zhang CP, Zhang WG, Ma ZY, Jiang Y |
115 - 123 |
Synergistic effect of 3D electrode architecture and fluorine doping of Li1.2Ni0.15Mn0.55Co0.1O2 for high energy density lithium-ion batteries Kumar SK, Ghosh S, Ghosal P, Martha SK |
124 - 132 |
Analysis of the performance of a passive hybrid powerplant to power a lightweight unmanned aerial vehicle for a high altitude mission Renau J, Sanchez F, Lozano A, Barroso J, Barreras F |
133 - 139 |
Nitrogen doped MoS2 nanosheets synthesized via a low-temperature process as electrocatalysts with enhanced activity for hydrogen evolution reaction Li RC, Yang LJ, Xiong TL, Wu YS, Cao LD, Yuan DS, Zhou WJ |
140 - 152 |
Nanoscale analysis of structural and chemical changes in aged hybrid Pt/NbOx/C fuel cell catalysts Chinchilla L, Rossouw D, Trefz T, Susac D, Kremliakova N, Botton GA |
153 - 162 |
A strategy of constructing spherical core-shell structure of [email protected] cathode material for high-performance lithium-ion batteries Chong SK, Wu YF, Chen YZ, Shu CY, Liu YN |
163 - 171 |
Study on (100-x)(70Li(2)S-30P(2)S(5))-xLi(2)ZrO(3) glass-ceramic electrolyte for all-solid-state lithium-ion batteries Lu PH, Ding F, Xu ZB, Liu JQ, Liu XJ, Xu Q |
172 - 180 |
Free-standing sulfur host based on titanium-dioxide-modified porous carbon nanofibers for lithium-sulfur batteries Song X, Gao T, Wang SQ, Bao Y, Chen GP, Ding LX, Wang HH |
181 - 190 |
Electropolymerized polyazulene as active material in flexible supercapacitors Suominen M, Lehtimaki S, Yewale R, Damlin P, Tuukkanen S, Kvarnstrom C |
191 - 199 |
An ion conductive polysiloxane as effective gel electrolyte for long stable dye solar cells Cipolla MP, De Gregorio GL, Grisorio R, Giannuzzi R, Gigli G, Suranna GP, Manca M |
200 - 211 |
Operando mu-Raman study of the actual water content of perfluorosulfonic acid membranes in the fuel cell Peng Z, Badets V, Huguet P, Morin A, Schott P, Tran TBH, Porozhnyy M, Nikonenko V, Deabate S |
212 - 222 |
"Green" carbon with hierarchical three dimensional porous structure derived from - Pongamia pinnata seed oil extract cake and NiCo2O4-Ni(OH)(2)/Multiwall carbon nanotubes nanocomposite as electrode materials for high performance asymmetric supercapacitor Chaitra K, Narendra R, Venkatesh K, Nagaraju N, Kathyayini N |
223 - 224 |
Special Section: "Microbial fuel cells: From fundamentals to applications": Guest Editors' note Santoro C, Arbizzani C, Erable B, Ieropoulos I |
225 - 244 |
Microbial fuel cells: From fundamentals to applications. A review Santoro C, Arbizzani C, Erable B, Ieropoulos I |
245 - 255 |
Progress of air-breathing cathode in microbial fuel cells Wang ZJ, Mahadevan GD, Wu YC, Zhao F |
256 - 273 |
Biotransformation of carbon dioxide in bioelectrochemical systems: State of the art and future prospects Bajracharya S, Srikanth S, Mohanakrishna G, Zacharia R, Strik DPBTB, Pant D |
274 - 287 |
Long-term performance of a 20-L continuous flow microbial fuel cell for treatment of brewery wastewater Lu MQ, Chen S, Babanova S, Phadke S, Salvacion M, Mirhosseini A, Chan S, Carpenter K, Cortese R, Bretschger O |
288 - 298 |
Ensemble engineering and statistical modeling for parameter calibration towards optimal design of microbial fuel cells Sun HY, Luo S, Jin R, He Z |
299 - 309 |
Electricity and biomass production in a bacteria-Chlorella based microbial fuel cell treating wastewater Commault AS, Laczka O, Siboni N, Tamburic B, Crosswell JR, Seymour JR, Ralph PJ |
310 - 318 |
Halotolerant extremophile bacteria from the Great Salt Lake for recycling pollutants in microbial fuel cells Grattieri M, Suvira M, Hasan K, Minteer SD |
319 - 323 |
Electron harvest and treatment of amendment free municipal wastewater using microbial anodes: A case study Rosa LFM, Koch C, Korth B, Harnisch F |
324 - 330 |
Carbon source and energy harvesting optimization in solid anolyte microbial fuel cells Adekunle A, Raghavan V, Tartakovsky B |
331 - 337 |
Performance of electro-spun carbon nanofiber electrodes with conductive poly(3,4-ethylenedioxythiophene) coatings in bioelectrochemical systems Guzman JJL, Kara MOP, Frey MW, Angenent LT |
338 - 347 |
Sampled-time control of a microbial fuel cell stack Boghani HC, Dinsdale RM, Guwy AJ, Premier GC |
348 - 355 |
Combined carbon mesh and small graphite fiber brush anodes to enhance and stabilize power generation in microbial fuel cells treating domestic wastewater Wu SJ, He WH, Yang WL, Ye YL, Huang X, Logan BE |
356 - 364 |
Energy harvesting influences electrochemical performance of microbial fuel cells Lobo FL, Wang X, Ren ZYJS |
365 - 370 |
Allometric scaling of microbial fuel cells and stacks: The lifeform case for scale-up Greenman J, Ieropoulos IA |
371 - 380 |
Three-dimensional graphene nanosheets as cathode catalysts in standard and supercapacitive microbial fuel cell Santoro C, Kodali M, Kabir S, Soavi F, Serov A, Atanassov P |
381 - 388 |
Graphene oxide nanoplatforms to enhance catalytic performance of iron phthalocyanine for oxygen reduction reaction in Bioelectrochemical systems de Oliveira MAC, Mecheri B, D'Epifanio A, Placidi E, Arciprete F, Valentini F, Perandini A, Valentini V, Licoccia S |
389 - 399 |
Separator electrode assembly (SEA) with 3-dimensional bioanode and removable air-cathode boosts microbial fuel cell performance Oliot M, Etcheverry L, Mosdale A, Basseguy R, Delia ML, Bergel A |
400 - 407 |
Carbonate scale deactivating the biocathode in a microbial fuel cell Santini M, Marzorati S, Fest-Santini S, Trasatti S, Cristiani P |
408 - 418 |
Revisiting methods to characterize bioelectrochemical systems: The influence of uncompensated resistance(iR(u)- drop), double layer capacitance, and junction potential Madjarov J, Popat SC, Erben J, Gotze A, Zengerle R, Kerzenmacher S |
419 - 429 |
Demonstration of the SeptiStrand benthic microbial fuel cell powering a magnetometer for ship detection Arias-Thode YM, Hsu L, Anderson G, Babauta J, Fransham R, Obraztsova A, Tukeman G, Chadwick DB |
430 - 437 |
Pilot-scale benthic microbial electrochemical system (BMES) for the bioremediation of polluted river sediment Li HN, He WH, Qu YP, Li C, Tian Y, Feng YJ |
438 - 447 |
Energy sustainability of Microbial Fuel Cell (MFC): A case study Tommasi T, Lombardelli G |
448 - 458 |
Understanding the impact of operational conditions on performance of microbial peroxide producing cells Young MN, Chowdhury N, Garver E, Evans PJ, Popat SC, Rittmann BE, Torres CI |
459 - 466 |
Evaluation of porous carbon felt as an aerobic biocathode support in terms of hydrogen peroxide Milner EM, Scott K, Head IM, Curtis T, Yu EH |
467 - 472 |
Nickel-based electrodeposits as potential cathode catalysts for hydrogen production by microbial electrolysis Mitov M, Chorbadzhiyska E, Nalbandian L, Hubenova Y |
473 - 483 |
Combining hydrogen evolution and corrosion data - A case study on the economic viability of selected metal cathodes in microbial electrolysis cells Brown RK, Schmidt UC, Harnisch F, Schroder U |
484 - 490 |
A novel tubular microbial electrolysis cell for high rate hydrogen production Guo K, Prevoreau A, Rabaey K |
491 - 499 |
Ammonia recovery from urine in a scaled-up Microbial Electrolysis Cell Zamora P, Georgieva T, Ter Heijne A, Sleutels THJA, Jeremiasse AW, Saakes M, Buisman CJN, Kuntke P |
500 - 509 |
Bioelectrochemical hydrogen production from urban wastewater on a pilot scale Baeza JA, Martinez-Miro A, Guerrero J, Ruiz Y, Guisasola A |
510 - 518 |
Stimulation of electro-fermentation in single-chamber microbial electrolysis cells driven by genetically engineered anode biofilms Awate B, Steidl RJ, Hamlischer T, Reguera G |
519 - 528 |
Strategies for merging microbial fuel cell technologies in water desalination processes: Start-up protocol and desalination efficiency assessment Borjas Z, Esteve-Nunez A, Ortiz JM |
529 - 538 |
Energy-positive wastewater treatment and desalination in an integrated microbial desalination cell (MDC)-microbial electrolysis cell (MEC) Li Y, Styczynski J, Huang YK, Xu ZH, McCutcheon J, Li BK |
539 - 548 |
Electrochemical and genomic analysis of novel electroactive isolates obtained via potentiostatic enrichment from tropical sediment Doyle LE, Yung PY, Mitra SD, Wuertz S, Williams RBH, Lauro FM, Marsili E |
549 - 555 |
Use of a small overpotential approximation to analyze Geobacter sulfurreducens biofilm impedance Babauta JT, Beyenal H |
556 - 565 |
The nanostructure of microbially-reduced graphene oxide fosters thick and highly-performing electrochemically-active biofilms Virdis B, Dennis PG |
566 - 571 |
Current density reversibly alters metabolic spatial structure of exoelectrogenic anode biofilms Sun D, Cheng SA, Zhang F, Logan BE |